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Modeling Mortgage Loss Distribution 
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Abstrakt 

The credit risk, a risk of counterparty default, was the first risk captured by risk management 
systems in banks. In our paper, we will show on an example of mortgage delinquency rates that 
a normal distribution can be outperformed in description of losses and that in some cases, the 
assumption that losses follow a normal distribution, can be very dangerous. Especially during 
volatile periods comparable to the current crisis, the normal distribution can underestimate tail 
losses. This imperfection can be corrected by assuming an alternative, e.g. generalized 
hyperbolic distribution for credit losses. 
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1 Introduction 

The credit risk, a risk of counterparty default, was the first risk captured by risk 
management systems in banks. Several decades after first risk management systems were 
introduced, the credit risk still remains the risk that has the most attention. The credit risk 
accompanies each business but is most visible in the financial sector. The business of the 
whole financial sector is based on a reallocation of capital sources. A traditional bank accepts 
deposits from the population and provides financing (loans) to individuals and companies that 
demand capital. One of the biggest risks arising from financial operations is the risk of 
counterparty default, commonly known as a “credit risk”. Leaving unmanaged, the credit risk 
would, with a high probability, result in a crash of a bank.  

In our paper, we will focus on the credit risk quantification methodology. We will 
demonstrate that the current regulatory standards for credit risk management are at least not 
perfect, despite the fact that the regulatory framework for credit risk measurement is more 
developed than systems for measuring other risks, e.g. market risks or operational risk. The 
current financial regulation was developed and maintained by European supervisory 
institutions (Basel Committee on Banking Supervision, CEBS – Committee of European 
Banking Supervisors) and its standards are summarized in the Second Basel Accord (“Basel 
II”, Bank for International Settlement, 2006), a document describing principles that should be 
applied in risk management at minimum. Basel II precisely defines methods for management 
and measurement of credit risk.  Especially measurement methods, derived from theoretical 
models (Vasicek, 1987), are of a high interest and a majority of space is dedicated to them. 
The Basel II is implemented into the European law by the “CRD – Capital Requirements 
Directive” (European Comission, 2006).  

Credit risk is in the Basel II regulated more than other types of risks, for whose Basel II 
leaves more independency. Basel II allows only two possible methods how to measure credit 
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risk – standardized approach (STA) and internal rating based approach (IRB) (for more details 
on these two methods see Bank for International Settlement, 2006). The main difference 
between STA and IRB is that, under IRB, banks are required to use internal measures for both 
the quality of the deal (measured by the counterparty’s “probability of default – PD”) and the 
quality of the deal’s collateral (measured by “loss given default – LGD”). The counterparty’s 
probability of default is a chance that the counterparty will default (or, in other words, fail to 
pay back its liabilities earlier than 90 days past due) in the upcoming 12 moths. The LGD is an 
estimate of how much of already defaulted amount will lose a bank in reality (after the 
collection process is finished). The LGD variable takes into account recoveries from the 
default, i.e. an amount that a creditor is able to collect back from the debtor after the debtor 
defaults. These recoveries mainly come from collateral sales and from bankruptcy 
proceedings. 

PDs and LGDs are two major and common measures for a deal quality and basic 
parameters for credit risk measurement. PD is usually obtained by one of the following 
methods: from a scoring model (Moody's KMV,  JP Morgan CreditMetrics, etc…), from a 
Merton-based distance-to-default model (mainly used for commercial loans; Merton, 1973 
and 1974) or as a long-term stable average of past 90+ delinquencies2. LGD can be modeled 
as a function of collateral value. This paper treats LGD as fixed and won’t describe techniques 
of its modeling. This simplification will allow us to focus more on the PD and explain the 
behavior of PDs more in detail. 

Once we obtain PDs and LGDs, we are able to calculate an average loss. The average loss 
is a mean measure of the credit risk and is a sufficiently exact measure of credit risk on a long-
term horizon. The problem is that losses on a portfolio occur with a certain probability 
distribution that is positively skewed. Thus to protect against credit risk, a bank has to decide 
on a level of probability, on which it would still be reasonable to protect itself against losses. 
The regulatory level of probability is 99.9%. This level may seem a bit excessive because it 
can be interpreted in the way that banks should protect themselves against a loss that occurs 
once in a thousand years. The fact is that such a far tail in the loss distribution was chosen 
because we lack the data – nobody has got even a hundred year long loss history. 

The quantification of a 99.9% loss is usually calculated by a Value-at-Risk type model 
(Anthony Saunders, 2002  or Fredrik Andersson, January 2001). IRB approach is a type of 
Value-at-Risk model and approximates the loss distribution with the standardized normal 
distribution.  

In this paper, we will introduce a new approach for measuring credit risk. This approach 
can be classed with the Value-at-Risk models and from the IRB method is different by 
assuming that losses follow a class of Generalized Hyperbolic Distributions.  In a general 
form, the new approach can be used to measure credit risk of many types of products – i.e. 
consumer loans, mortgages, overdraft facilities, commercial loans with a lot of variance in 
collateral, exposures to sovereign counterparties and governments, etc. To test our model, we 
will demonstrate its goodness-of-fit on a nationwide mortgage portfolio. Moreover, we will 
compare our results with the IRB approach, prove that the credit risk quantification method 
based on the normal distribution is not very exact and comment on what difficulties can come 
when the assumption of normality turns out to be inappropriate. 

The paper is organized as follows. After the introduction we will describe usual credit risk 
quantification methods and Basel II embedded requirements in detail. Then we will derive a 
new method of measuring credit risk, based on the class of Generalized Hyperbolic 
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Distributions and Value-at-Risk methodology. The last part will focus on the data description 
and results of numerical calculations. We will show that the class of generalized hyperbolic 
distributions can capture the credit risk more accurately than the IRB approach from Basel II. 
At the end we summarize our findings and bring recommendations for further research. 

2 Credit risk measurement methodology 

The Basel II document is organized into three separate pillars. The first pillar requires 
banks to quantify credit risk, operational risk and market risk by a method approved with the 
supervisor. For credit risk there are two possible quantification methods: “The Standardized 
Approach” (STA), which is more basic, and “The Internal Rating Based Approach” (IRB). 
Both methods are based on quantification of risk-weighted assets for each individual 
exposure. The biggest difference between these two methods is that the STA uses a fixed 
percentage of risk-weighted assets to quantify a largest loss that could occur on the regulatory 
(99.9%) level of probability, whether the IRB method uses deal-based risk measures PD and 
LGD to obtain a mean loss and then the loss distribution to get the largest possible loss on the 
regulatory probability level.  Loss itself is defined as an amount that is really lost when a 
default occurs. Default is a delay in payments due more than 90 days (90+ delinquencies).  

There is no PD or LGD feature in the STA method and thus the method is relatively 
inaccurate. On the other hand, the advantage of this method is its simplicity. The IRB 
approach is more accurate but relatively difficult to maintain. A bank using the IRB method 
has to develop its own scoring and rating models to estimate PDs and LGDs. These 
parameters are then used to define each separate exposure3. An average loss that could occur 
in following 12 months is calculated as follows: 

 
 (i) 

 
where EAD is the exposure-at-default and EL is an abbreviation for “Expected loss”. We 

will borrow the EL calculation to obtain the first moment of our loss distribution. The 
difference is that we will hold both LGD and EAD fixed at 1 so the expected loss is only 
derived from the PD. This simplification doesn’t mean a loss in generality. The LGD and 
EAD can be calculated as an EAD weighted average in the case of LGD and a sum over the 
portfolio in the case of EAD. Thus, our economic loss is equal to PD, showing the percentage 
of all accounts that defaulted. 

EL is an average loss that would occur each year and thus is something that banks count 
into their loan pricing models. It necessarily has to be covered by ordinary banking fees and/or 
interest rate payments. However, EL is the “mean loss” and thus is unable to catch any 
volatility in losses. To protect themselves against the loss volatility, banks should hold capital 
to cover maximum loss that could occur on the regulatory probability level at minimum. To 
capture the variability in credit losses over time and to calculate the needed quantile of the 
loss distribution, we need a second moment of the loss distribution, the standard deviation at 
minimum.  

On the deal level, the standard deviation calculation can be derived from the properties of 
the default. The default is a binary variable – it either occurs (with a probability equal to PD) 
or not (with a probability equal to (1-PD)). The loss occurs with the same probability as the 
default but is usually lower than the defaulted amount (due to the fact, that the bank sells it’s 
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collateral and collects partly the defaulted amount – this is, in fact, LGD) and thus follows a 
binomial distribution. We can calculate standard deviation of a loss by substituting into the 
formula for binomial distribution standard deviation. The final formula is: 

 

 (ii) 
 
In the formula above we call the standard deviation of a loss “ULC” or “unexpected loss 

contribution”, because the ULC show us the uncertainty of the loss. However, on the portfolio 
level, the standard deviation calculation is not so straightforward. Deals are correlated among 
each other. We have a complicated correlation structure that is usually unknown and thus we 
don’t even know how individual deals in our portfolio are interacting. 

The second pillar of Basel II (Pillar 2) requires banks (in addition to Pillar 1 calculations) 
to develop their own models to quantify all identified risks that a bank could face in the 
upcoming year. The idea behind is that banks know much better their risk profiles much better 
and thus are able to calculate capital needed to cover unexpected losses more accurately than 
using Pillar 1 methods. The final capital that a bank should hold to cover its credit risk is the 
maximum of the following two capital requirements: the regulatory capital requirement 
calculated by an approved Pillar 1 (i.e. STA or IRB) method and the internal capital 
requirement calculated by the bank’s own model. The Internal capital requirement is often 
called “economic capital”.  

In our research we suggest a model that could be used as an internal bank’s model to 
calculate the economic capital requirement under Pillar 2. The main idea of our model is to 
use a different loss distribution, which would be able to capture loss development better than 
the normal distribution suggested by the IRB approach. 

3 The economic capital model 

There are two possible ways how to assess economic capital. First is the so called bottom-
up approach, when the stock of economic capital requirement is calculated for each exposure 
and then aggregated using a correlation structure (this method is used in IRB approach). The 
second possibility is to calculate economic capital by a “top-down” approach, which in fact 
means, that the capital requirement is calculated for the whole bank without any concern in 
individual exposures. We will use the top-down approach because our data are collected from 
the whole US economy and don’t have the granularity needed for the bottom-up approach. 

 The first step is to choose the right loss distribution. Our model is based on the class of 
generalized hyperbolic distributions, first introduced in (O.E. Barndorff-Nielsen, 1985). The 
advantage of this class of distributions is that it is general enough to describe a fat-tailed data. 
It was shown (Eberlein, 2001, 2002, 2004) that the class of generalized hyperbolic 
distributions is able to capture the variability in financial data in a better way than the normal 
distribution, which is being used by the IRB approach. Generalized hyperbolic distributions 
were already used in an asset (and option) pricing formula (Rejman, 1997; Eberlein, 2001 or 
Chorro, 2008), for the Value-at-Risk calculation of the market risk (Eberlein, 2002; Eberlein, 
1995 or Wenbo Hu) and in a Merton-based distance-to-default model to estimate PDs in the 
banking portfolio of commercial customers (e.g. Oezkan, 2002). We will show that the class 
of generalized hyperbolic distributions can be used for the approximation of a loss distribution 
for the retail banking portfolio with a focus on mortgage book. The crucial assumption of our 
model is that credit losses from mortgages follow a generalized hyperbolic distribution over 
time.  
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The next step in the economic capital calculation is to calculate the difference between the 
mean of the loss distribution and its certain percentile (equals to the probability level used for 
the economic capital calculation). We will use the 99.9% percentile of the loss distribution 
because of the simplicity of consequent comparison to the IRB method. The mean of the loss 
distribution is calculated using (i) and the fact that LGD and EAD are fixed at 1. 

3.1 The class of generalized hyperbolic distribution 

The class of generalized hyperbolic distributions is a special, quite young class of 
distributions. It is defined by the following Lebesque density: 

 

 (iii), 
where 

    (iv) 

 
and  is a Bessel function of the third kind (or modified Bessel function – for more details 

on Bessel functions see Abramowitz, 1968). The GH distribution class is a mean-variance 
mixture of Normal and Generalized Inverse Gaussian (GIG) distributions. Both Normal and 
GIG distributions are thus subclasses of Generalized Hyperbolic Distributions.  and  are 
scale and location parameters, resp. Parameter  is a skewness parameter and a transformed 
parameter  determines kurtosis. The last parameter  is a determination of 
distribution subclass. There can be found several alternative parameterizations in the literature 
using transformed parameters to obtain scale- and location-invariant parameters. This is a 
useful feature that will help us with the economic capital allocation to individual exposures. 
For the moment generating function and for more details on the class of generalized 
hyperbolic distributions, see Appendix. 

Because the class of generalized hyperbolic distributions was historically used for different 
purposes in economics as well as in physics, one can find several alternative parameterizations 
in the literature. In order to avoid any confusion, we list most common parameterizations. 
These are: 

 

   (vi) 

    (vii) 
    (viii) 

 
Main reason for using alternative parameterizations is to obtain a location- and scale- 

invariant shape of the moment generating function (see Appendix).  

4 Data and results 

4.1 Data description 

To verify whether a Value-at-Risk based model built on the class of generalized hyperbolic 
distributions is able to better describe the behavior of mortgage losses, we will use a data for 
the US mortgage market. The dataset consists of quarterly observations of 90+ delinquency 
rates (more than 90 days past due accounts) collected by the U.S. Department of Housing and 
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Urban Development and the Mortgage Bankers Association4. The dataset begins with the first 
quarter of 1984 and ends with the third quarter of 2008 and represents the most recent dataset 
available at the time. The development of U.S. mortgage delinquency rates is illustrated in the 
Figure 1. We observe an unprecedentedly huge increase in delinquency rates beginning with 
the second quarter of 2007.  

 
Figure 1: Development of US mortgage delinquency rates 

 
We have tested the dataset for autocorrelation with the Ljung-Box Q statistic and our 

results show that, on the 95% probability level, the dataset is strongly autocorretaled and non-
stationary (with the gamma coefficient equal to 1.05 and significant on the 95% probability 
level). Moreover, we performed the Augmented Dickey-Fuller test for a unit root process and 
we can’t reject on the 95% probability level the null hypothesis that the dataset follows a unit-
root process. Thus we have decided to use logarithmic returns and the new dataset is defined 
by: 

, (xi) 
 

where DEL are delinquencies in the original dataset. The Ljung-Box Q statistic now shows 
that we can’t reject the null hypothesis of no autocorrelation in the delt dataset. Logarithmic 
changes can be at the end easily converted back to the original values by: 

 
)exp(1 ttt delDELDEL ⋅=

−  (xii) 
 

4.2 Results 

We fitted several distributions to the sample delt and sorted them by the chi-square 
goodness-of-fit statistic. The compared distributions were LogLogistic, Logistic, LogNormal, 
PearsonV, Inverse Gaussian, Normal, Gamma, Extreme Value, Stable and the Class of 
Generalized Hyperbolic distributions. The distributions were fitted to the delt dataset by 
maximizing the log-likelihood function, constructed from the distribution density function. In 
the set of compared distributions, we were particularly interested in the goodness-of-fit of the 
Class of Generalized Hyperbolic Distributions and their comparison to other distributions. 
The log-likelihood function in the case of the Class of Generalized Hyperbolic Distributions 
has got the following form: 

                                                           
4 The Mortgage Bankers Association is the largest US society, representing the US real estate market 
with over 2,400 members (banks, mortgage brokers, mortgage companies, life insurance companies, 
etc…). 
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(xiii) 
 

For the fitting procedure we have used the R package “ghyp”, which uses a different 
parameterization of the distribution density. The second step is to test the hypothesis that the 
empirical dataset comes from the tested distribution. We used the chi-square goodness-of-fit 
test in the form: 

∑
=

−=

k

i

iii EEO
1

22 /)(χ

, (xiv) 
 

where Oi is the observed frequency in the i-th bin, Ei  is the frequency implied by the tested 
distribution and k is the number of bins. The test statistic follows the chi-square distribution 
with (k – c) degrees of freedom, where c is the number of estimated parameters. In the 
following table there are sorted distributions together with p-values of the chi-square statistic. 
The chi-square statistic will be used to decide on whether we can or cannot reject the null 
hypothesis that the dataset delt is drawn from the tested distribution. In order to reflect 
different number of parameters for tested distributions, we have divided obtained Chi-square 
statistics by number of degrees of freedom (number of parameters in the tested distribution).  

We have used a different statistic to compare all tested distributions and sort them by their 
goodness-of-fit: the Anderson-Darling statistic. This statistic is a measure of the distance 
between the original sample and a tested distribution. The advantage of Anderson-Darling 
(compared to e.g. Kolmogorov-Smirnov or Chi-square test) is that the statistic is able to 
capture the bias in tails. The following table summarizes our results and is sorted by the Chi-
square statistic:  

  
Distribution Wasserstein 

Metric 

Anderson 

Darling 

Distance 

Chi-square 

Statistic  

P-value of 

Chi-square 

Reject/Cannot 

Reject on the 

90% probability 

level 

Generalized 

Hyperbolic 

0.005 0.19 4.98 0.55 Cannot Reject 

Stable 0.007 0.26 9.91 0.27 Cannot Reject 
LogLogistic 0.006 0.42 9.98 0.44 Cannot Reject 
Logistic 0.007 0.59 11.10 0.35 Cannot Reject 
PearsonV  0.009 0.90 12.45 0.26 Cannot Reject 
LogNormal 0.009 0.91 12.45 0.26 Cannot Reject 
Inverse Gaussian 0.009 0.93 14.69 0.14 Cannot Reject 
Normal 0.011 1.33 15.14 0.13 Cannot Reject 
Gamma 0.009 0.95 16.49 0.09 Reject 
Extreme Value 0.015 1.68 18.29 0.05 Reject 

Table 1: Comparison of goodness-of-fit of tested distributions 

 
According to the Table 1, both Chi-square and Anderson-Darling tests show that the best 

fit has got the Generalized Hyperbolic Distribution (GHD). The Figure 1 shows graphically 
the difference between chosen distributions. We were particularly interested in the GHD and 
Stable Distribution because these two distributions show much better fit than other 
distributions, according to the Anderson-Darling test. From the Figure 1 we can see that the 
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GHD is able to describe both the skewness and the kurtosis of the dataset. We compared 
GHD, Stable, Normal, Lognormal and Logistic distributions (Normal and Lognormal because 
of their role in Pillar 1 calculations and Logistic because it has shown a good performance). 
The Figure 2 shows the difference in tail behavior of GHD, Stable, Normal, Lognormal and 
Logistic distributions and points out the gap in the right tail between GHD and Stable on one 
side (both heavy-tailed) and remaining distributions on the other side. 

 
Figure 2: Compared histograms: distributions vs. delt dataset 

 

 
Figure 3: Comparison of the right-tale behavior 

 
Our calculations show that the Class of Generalized Hyperbolic distributions is able to 

describe the behavior of delinquencies much better than other distributions widely used for 
risk assessment (Normal, Lognormal, Logistic, Gamma). This fact can have a large impact to 
economic capital requirement as the Class of Generalized Hyperbolic Distributions is heavy-
tailed and thus would imply a larger stock of capital for covering a certain percentile 
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delinquency. We will now demonstrate that the difference between economic capital 
requirements calculated under the assumption that mortgage losses follow a Generalized 
Hyperbolic Distribution and under the Basel II IRB method (assuming normal distribution).  

4.3 Economic capital on a one-year horizon: implications for the crisis 

The IRB formula, defined in the Pillar 1 of the Basel II Accord, assumes that losses follow 
a normal distribution. We have shown that this assumption is at-least not perfect and that an 
alternative, in our case generalized hyperbolic distribution, is able to capture the volatility in 
delinquencies much better. The problem of the normal distribution is the tail behavior and 
because the regulatory capital requirement is calculated on the 99.9% probability level, this 
disadvantage may lead to serious mistakes in the assessment of capital need. To show the 
difference between the regulatory capital requirement (calculated by the IRB method) and an 
economic capital requirement calculated by our model, we will perform the economic capital 
requirement calculations on the 99.9% probability level. Moreover, we will calculate the mean 
value of delinquency rate for both distributions to show the mean expected delinquency rate 
on a one-year horizon.  

The problem is that we have estimated both normal and generalized hyperbolic 
distributions on a quarterly dataset and we need to transfer obtained quarter changes to yearly 
figures. This is not a problem for the normal distribution because under the normal 
distribution, elements follow a random walk and the convolution is quite simple to calculate. 
For the GHD, elements follow a Lévy motion and thus we would need to calculate a second 
convolution of the GHD. This calculation is rather more difficult and therefore we have 
decided to use simulations to obtain yearly figures.  

To evaluate the distribution performance, we will calculate mean values of the delinquency 
rate predicted by both generalized hyperbolic and normal distributions on a one year horizon. 
Predicted values will be compared with the original dataset and the mean squared error of 
both predictions will be calculated. Our results are summarized in the following table. 
Moreover, the “99.9% quantile failure” column shows how many times was the actual 
delinquency rate higher than the 99.9th quantile of the prediction. The MSE is very similar in 
both cases, which indicates that both distributions were very close in predicting the mean 
value. However, there is a difference in tails. Due to the 99.9% quantile failure, normal 
distribution is much less capable of capturing the behavior. From 95 observations, the actual 
delinquency rate was three times larger than the 99.9th quantile of the normal distribution. 
This did not happen in the case of GHD. 

 
Distribution Mean Squared Error 99.9% quantile failure 

GHD 0.02823 0 
Normal 0.02873 3x (Q1, Q2 and Q3 2008) 
Table 2: GDH vs. Normal distribution MSE and 99.9% quantile failure 

 
Moreover, we will compare the distribution performance on recent delinquencies. In the 

last four quarters of the original dataset (Q3 2007 – Q3 2008) the delinquency rate increased 
dramatically (from 1.26% in Q3 2007 up to 2.2% in Q3 2008). In the table below, the 
delinquency mean value and 99.9% quantile, implied by both normal and GHD distributions, 
are summarized. Compared with the 2.2% delinquency rate of the third quarter of 2008, we 
see that the normal distribution even on the 99.9% level of probability failed to capture the 
high increase in delinquencies observed. This could lead to under-capitalization of the 
mortgage part of the US banking sector and serious problems with funding.  
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Quantile GHD Q3 2008 

implied delinquency 

rate  

Normal distr. Q3 

2008 implied 

delinquency rate  

Absolute difference 

GHD vs. Normal 

Mean Value 1.30% 1.28%  0.02 pp 
99.9% 2.266%  1.96%  0.31 pp 

Table 3: GDH vs. Normal distribution Q3 2008 implied delinquency rate (pp=percentage points) 

 
The GHD implied delinquency rate on the 99.9% level of probability is higher than the 

observed value. This fact can be interpreted as a success in derivation of capital needed to 
cover unexpected credit losses.  

5 Conclusion 

We have compared several distributions performance in credit risk quantification. For this 
purpose, we have used quarterly dataset of mortgage delinquency rates form the US financial 
market. Especially two classes of distributions, stable and generalized hyperbolic, showed 
much better performance, measured by Wasserstein and Anderson-Darling metrics. From 
these two, the class of generalized hyperbolic distributions was slightly better in describing 
the used dataset.  

The current banking regulation, summarized and formalized in The Second Basel Accord 
(Basel II) uses the normal distribution for the credit risk assessment. In the loss distribution, 
the mean value (expected loss) should be covered by banking fees and interest and the 
difference between the mean value and the 99.9th quantile (unexpected loss) should be 
covered by a stock of capital. We have compared the predicted stock of capital that a bank 
would need to cover unexpected losses on the 99.9% level of probability.   

Our results show that the normal distribution wasn’t able, even on the 99.9% level of 
probability, to capture the change in delinquency rate, whereas the generalized hyperbolic 
distribution predicted such a stock of capital, which was sufficient to cover even a recession 
high increase in delinquency rate. Therefore, using the class of generalized hyperbolic 
distributions is more suitable to measure credit risk for a mortgage portfolio. 

We have proved that using the normal distribution to quantify credit risk is an assumption 
that could be easily over-performed by choosing a different, alternative distribution, such as 
the class of generalized hyperbolic distributions. There are still several questions that need to 
be answered before the Class of Generalized Hyperbolic Distributions can be used for credit 
risk assessment. More empirical studies have to be performed to proof the goodness-of-fit of 
the Class of Generalized Hyperbolic Distributions. The next suggestion is to add an LGD 
feature to the calculation to obtain a general credit risk model. 
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Appendix 

The moment generating function for the Class of Generalized Hyperbolic distributions is of 
the form: 
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, (v) 
 
where u denotes the moment. For the first moment, the formula simplifies to: 
 

  (vi) 
 
Whether the second moment is calculated in (technically) more difficult way: 
 

 

 (vii) 
 
By substituting from the equations (vi) into (v) we obtain much simpler expression for the 

first and second moment of the class of generalized hyperbolic distributions. Following 
equations express the first and the second moment of the class of generalized hyperbolic 
distributions in their scale- and location- invariant shape: 

 

   (ix) 

   (x) 
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Summary 

Kreditní riziko, neboli riziko selhání protistrany, se stalo prvním rizikem, které bylo 
podchyceno systémy řízení rizik v bankách. V našem článku ukážeme na příkladě hypotečních 
delikvencí, že normální rozdělení může být v popisu kreditních ztrát překonáno a že 
v některých případech může být předpoklad normálního rozdělení kreditních ztrát dokonce 
značně nebezpečný. Především v průběhu volatilitních období, porovnatelných se současnou 
ekonomickou krizí podceňuje normální rozdělení kreditní ztráty ve chvostech. Tato 
nedokonalost může být upravena tím, že budeme předpokládat alternativní, v našem případě 
zobecněné hyperbolické rozdělení kreditních ztrát. 

 


