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Abstract 

The aim of this paper is to estimate and test non-linearities in the electricity prices of three 
selected regions (California, Nord Europe and Austria). To exploit non-linearity, we apply the 
SETAR (Self Exciting Threshold Auto-Regressive) models that imply and distinct regimes in 
time series dynamics with potentially different parameters (and thus dynamics properties) of 
each regimes. We find the most appropriate SETAR model for modelling electricity prices at 
selected markets, next we perform the statistical verification of each model and we also find out 
if our model outperform the linear AR model.  
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1 Introduction 

In many parts of the world, sector of electricity generation is gradually converting to the 
competitive market structure replacing traditional monopolistic environment and therefore 
there arises the needs to model the time series of electricity price.  

An accurate modelling and forecasting of electricity prices including analyzing of factors 
affecting them has become a very important tool both for generators and consumers. In a short 
time period, the generating company needs to forecast electricity prices to set its generating 
strategy and to optimally schedule energy resources. This is important for the reason of 
necessity of profit planning and forecasting and that is why accurate electricity prices 
modelling and forecasting is crucial information for any decision-making. Customers needs 
short-time forecast of electricity prices for the same or similar reasons as producers.  

It is also necessary to point out, that electricity prices gather characteristics which reflects 
in the time series evolution: high frequency, non constant mean, autocorrelation, non-normal 
distribution, heteroskedasticity, seasonality, high volatility and high frequency of occurrence 
of unusual prices etc. This can incur the occurrence of outages, blackouts, and price peaks, 
which happen seldom in the regulated environment.  

There is wide range of papers concentration on modelling, forecasting electricity prices. A 
group authors have tried to develop models for electricity prices at European electricity 
market. Results from Čulík, Valecký (2007), Čulík, Valecký (2008), etc. confirm the fact, that 
in the short time, daily electricity prices evolve randomly, but in the long-run period have the 
tendency to revert to the long-run level. Similarly, Ecsribano et al (2002) analyze the factors 
affecting electricity prices and the presence of mean-reversion process at five different 
electricity markets. They conclude that in five markets analyzed using daily data; Argentina, 
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Australia (Victoria), New Zealand (Hayward), Nordpool, PJM and Spain, equilibrium 
elektricity prices are mean-reverting. Similar results can be found in Deng, Jiang (2005), Kian, 
Keyhani (2001), Garcia, Contreras, Akkern (2003), Guirguis, Felder (2004), Catalao et al 
(2007) etc. Next, Bunn, Karakatsani (2003) focused on explanation of the extraordinary 
stochastic properties of electricity price time series for example how prices react to temporal 
market irregulation, reaction conditional volatility to past volatility and shocks etc.  

We employ the Self Exciting Threshold Auto-Regressive model and verify if application of 
these models gives better results than linear. We aim at the comparison of linear and non-
linear models if it is possible improving data fitting and diagnostic checks of model residuals. 
On the one hand, we show that they are more appropriate for modelling the financial time 
series than linear models, but on the other hand, we also conclude that using of non-linear 
SETAR models does not improve the diagnostic checks of residuals in the sense of 
heteroscedasticity and non-normality testing. 

The paper is organized as follows: SETAR model is described in Section 2 including the 
description of estimation method and constructing confidence interval of estimated 
parameters. Section 3 is devoted to statistical verification of the model in the sense of residual 
testing and particular estimated model and their comparison with linear model are presented in 
Section 4. Section 5 concludes this paper.  

2 Model description 

Let 1, ,
k

p pK  be an integer positive numbers representing the order of particular 

autoregressive models and d  a delay parameter, the general SETAR model of k regimes takes 
the form of 

 ( ) ( )0 1 1 ,
1
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k
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A general two-regime SETAR model is defined as 
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where r is threshold parameter. If the model takes on the form (3), the particular linear 
autoregressive process is partitioned by threshold value 

t d
y −  with delay d and in assistance 

with threshold parameters r . In this paper, the process { }tε  we assume to be iid ( )20,σ , 

although it can be also heteroskedastic. 

2.1 Estimation of SETAR model 

The model form of Equation (3) can be rewritten in the following representation, 

 ( )( ) ( )( )
1 21 , 2 ,t t p t d t p t d ty I y r I y r ε− −

′ ′= ≤ + > +α Y α Y , (4) 

where ( ), 11, , ,
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ii i i p i
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=α K  for 1,2i = . 
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The unknown parameters ( )1 2,
′

′ ′=α α α  and threshold parameter r must be estimated on the 

observed data ( )1, , Ty y=Y K  and delay parameter d the order of
i

p  is needed to determined. 

For this purpose, the sequential conditional LS estimator is employed under the auxiliary 

condition that process 
t

e  is iid ( )20,σ . Then under this condition, the LS estimator is 

equivalent to maximum likelihood estimation. 
LS estimation of parameters for given value of r is as follows, 

 ( ) ( ) ( ) ( )
1
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t t t t

t t
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with residuals ( ) ( ) ( )ˆ ˆ
t t t

r y r r′= −e α Y  and residual variance 
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In order to estimate the parameter r, ordinary LS regression is run, setting 1t
r y −=  for all 

1t
y R− ∈  and for each regression compute the residual variance ( )2ˆ

e rσ ; then pick the value of r 

corresponding to the smallest variance, thus  
 ( )2ˆ ˆmin

e
r R

r rσ
∈

= ,         (7) 

where [ ],R r r=  is a set of all possible threshold parameters comprises all observed data and 

( )minr = Y , ( )maxr = Y . It is obvious that one needs to run T regressions in order to find 

parameters ( )ˆ ˆ r̂=α α .  

The same problem arises in determination the delay variable 1,d d ∈   , where d hat is the 

maximum considered delay. It follows that the amount of T regressions is not final. The 
minimization problem of Equation (7) is augmented to include a search over d, so instead of T 
regressions, the search method requires the amount of Td  regressions and the parameters are 
used for estimating the slope parameters that satisfy following function 

 ( ) ( )2

,

ˆˆ ˆ, min ,
e

r R d
r d r dσ

∈
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Finally, we add some remarks concerning the practical implementation of this framework. 
In practical use of non-linear models, practitioner can find several appropriate models for 
fitting data. Therefore, some goodness of fit measures of an estimated model was developed. 
We present Akaike’s information criterion for k regimes in the form of  

 ( )2

1

ˆln 2 1
k

i i i

i

AIC T pσ
=

= + +∑ .        (9) 

It is also necessary to further noted that for the reliable model estimation the set of 
threshold parameters R must be selected so that each regime contains the sufficient 
observations. Therefore, the set of threshold parameter R is not bounded by the observed data, 
but by the technique ensuring sufficient number of observation in each regime. For instance, 
the 15th and 85th quartile are used to determinate the boundary of set R. 

2.2 Confidence intervals 

To test the statistical significance of estimated parameters, the confidence intervals are 
necessary to construct. Firstly, we explain the difficulties occurring in constructing the 
confidence interval of threshold parameter and afterwards we present the same for the slope 
parameters. 
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The confidence interval of threshold parameter is given by 

 ( ) ( ){ }ˆ :
T

r r LR r zβΓ = ≤ , (10) 

where 
T

LR  is likelihood ratio for the null hypothesis 0 0ˆ:H r r=  in the form of 
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and zβ  is β -level critical value that is available in Hansen (1997, 2000). The graphical 

method of finding the confidence interval relies on plotting values of ( )TLR r  against r and 

drawing the horizontal line at value of zβ . Needless to say, there might arise a problem in 

practice because the region can be disjoint and for that reason difficult applicable. Therefore, 

the convexified region is constructed and used ( ) [ ]ˆ ,r r rΓ = , where ( )( ){ }ˆ: minr r r= Γ  and 

( )( ){ }ˆ: maxr r r= Γ . 

The confidence interval of the estimated slope parameters can be constructed in the 
standard way as they are in linear models. Let r̂  be a estimated threshold value, the α -level 

confidence interval ( )ˆ
ˆ r̂Θ
α

 of the slope parameters α%  is given by  

 ( ) ( ) ( )ˆ
ˆ ˆˆ ˆ ˆ ˆr r z s rηΘ = ±
α

α , (12) 

where zα  is α -level critical value for the normal distribution and ( )ˆ ˆs r  denotes a standard 

error. Hansen (1996) pointed out that such constructed confidence intervals are not reliable in 
case of finite sample because the threshold parameter can be estimated not very precisely and 
can contamine the estimate of α% . Therefore, he proposed to take the union of all constructed 

confidence interval of ( )ˆ rα  for all ( )ˆr r∈Γ , thus 

 ( )
( )

ˆ
ˆ

ˆ ˆ
r r

r
∈Γ

Θ = Θ
α U . (13) 

3 Model verification 

After the model estimation, its verification is necessary. Firstly and foremost, the estimated 
model of Equation (4) has to be statistically significant relative to linear AR model. 
Consequently, obtained residual ( )ˆ

t re  have to meet the assumption of the white noise and the 

slope parameters are needed to be statistically significant. 

Firstly, we show the linearity test according to Hansen (1996, 1997) under the conditions 
that the parameter r is known and 

t
ε  is assumed to be iid. The relevant null hypothesis 

0 1 2
ˆ ˆ:H =α α  is tested against hypothesis 1 1 2

ˆ ˆ:H ≠α α . 
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The relevant F-statistics ( )ˆ
TF r  is equivalent to the supremum over the set R of the point-

wise test-statistic ( )TF r , 
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is OLS estimate of parameters 
AR
α%   from linear autoregressive model of order p. 

For slope parameters testing, one is allowed to use standard T-test by using the united 
confidence interval from the Equation (13), see Hannsen (1996, 2000),. 

The last step of the statistical verification poses (consists in) the necessity to perform 
diagnostic checks of residuals ( )ˆ

t re . Some tests that are used in the traditional linear 

framework can be applied also to testing of the non-linear models. For instance, Jarque-Bera 
test can be used for normality testing in both frameworks. On the other hand, common Ljung-
Box test does not remain valid; see Eitrheim and Terasvirta (1996). 

Here, generalized LM test is employed for serial correlation in an AR(p) model of Breusch 
and Pagan (1979), which is based on the auxiliary regression, 

 1 1 1 1
ˆ ˆ ˆ

t t p t p t q t q t
y y vε β β δ ε δ ε− − − −= + + + + + +L L . (18) 

The LM test for q-th order serial dependence in 
t

ε  is obtained as 2TR , where 2R  is 

coefficient determination from the regression 
t̂

ε  on ˆ
t

z , which ˆ
t

z  are relevant partial 

derivation of non-linear model, thus  

 1 1 1
ˆ ˆ ˆˆ ˆ

t t p t q t q t
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where  

 ( )ˆˆ ;
t t

z F y= ∂ ∂θ θ  (20) 

and ( )ˆ;
t

F y θ  is non-linear SETAR model of Equation (3) and ( ), , ,r d= 1 2θ α α  are estimated 

parameters. 
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4 Empirical results 

In this part, we present the empirical results that we gathered in daily electricity price 
modelling by applying non-linear SETAR models. We employed this approach on electricity 
price data series form California (prices obtained from Energy Information Administration), 
Nord Europe (prices obtained from Nord Pool) and Austria (prices obtained from Energy 
Exchange Austria). Data set were obtained consists of eight annual time series from 2006 – 
2008 and contains the daily electricity prices. To obtain our data sample, we worked with 
discrete daily returns. 

The accuracy of fitting the time series by non-linear model was compared with accuracy of 
linear AR model. As criterions for the comparison, the residual variance and results of 
diagnostic checks were used. Firstly, we estimated all SETAR models and constructed 
confidence intervals of all parameters. Then we conducted the diagnostic checks and 
compared gathered empirical results with linear models. Thus, it was necessary to verify if 
nonlinear model gives better results than linear for the purpose of modelling times series.  

4.1 Model estimation 

The crucial problem in SETAR estimation poses a determination of delay parameter and 
order of particular autoregressive process. The main slope parameters estimation follows 
immediately. One can explicitly define the delay parameter and order of AR processes, but 
this approach is susceptible to be misspecified. Therefore, we employed a special algorithm 
representing the complete enumeration of all possible models combining our conditions. 

We form a set of possible delay parameter { }1,2, ,5d ∈ K , a set representing the order of 

autoregressive model { }1 2, 1, 2, ,6p p ∈ K  and the set of threshold parameter { }0.15 0.85,r p P∈ , 

where 0.15p  and 0.85P  is 15th and 85th percentile. For all combination, we estimate the slope 

parameters. We choose order of autoregressive part corresponding to the minimal AIC 
criterion of Equation (9) and select the delay and threshold parameter corresponding to the 
minimal residual variance. Thus, we need to perform 172,970 of estimations for each time 
series. 

The estimation results are summarized in the following tables. Table 1 reports determined 
delay parameter, estimated threshold parameters and order of autoregressive parts for each 
time series.  

Table 1: Threshold parameters and orders of delay and autoregressive parts 

Nord Europe California Austria

delay parameter 1 1 1

threshold parameter 5.160 -1.3876 -27.0497  

Next, the construction of confidence intervals follows. For this purpose, we perform a 
Monte-Carlo experiment. We generate 3,500 values of threshold parameter and for each of 
them we computed LR statistics according to the Equation (11). Then we plot them against 
generated threshold parameter and draw the line zα  at the critical value of 7.35, see Hansen 

(1997, 2000). The Figure 1 depicts results of our experiment. 
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Figure 1: Confidence intervals for threshold value 

We can see that the 95 % confidence intervals are not really tight in some cases (especially 
for California) and are disjoint (Austria). Therefore, we have to convexify the obtained region 
in accordance with above-mentioned technique in Section 2.2.  The Table 2 records the 
results.  

Table 2: Convexifed 95 % confidence intervals of threshold parameters 

Nord Europe California Austria

min 4.832 -1.850 -28.291

threshold parameter 5.160 -1.388 -27.050

max 5.788 -0.918 -26.366  

For precision assessing of the estimated threshold parameters, we split our sample data into 
regime 1 for 

t d
X r− <  (left column in Table 3) and into regime 2 for 

t d
X r− >  (right column). 

We also extract the data belonging to the gray zone, thus { },t dX r r− ∈ , see next table.  

Table 3: Regime splitting of data 

Nord Europe 800 79.60% 36 3.58% 169 16.82%

California 403 40.10% 50 4.98% 552 54.93%

Austria 153 15.25% 5 0.50% 845 84.25%

Regime 1 Gray Zone Regime 2

 

The threshold parameters are estimated precisely for all cases, especially for Austria. For 
this time series, more than 99.5 percent of all observations fall to one of the two regimes with 
certainty and only 0.5 percent of all data are in gray zone.  

The next Table 4 presents estimated slope parameters of particular regimes and for all time 
series. Statistically significant coefficients are in bold. In the last row of the table, we show the 
number of observations used for slope parameters estimation in each regime. 
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Table 4: Slope parameters of non-linear SETAR model 

1 2 1 2 1 2

p0 10.2184 -3.3102 5.0907 -6.9629 9.5961 -44.8087

p1 -0.5154 0.0050 0.2546 -0.3558 -0.2373 -0.0881
p2 -0.4791 -0.0079 -0.0813 -0.3625 -0.3497 -0.2859

p3 -0.3716 -0.0647 0.0015 -0.2388 -0.1858 -0.2247

p4 -0.4976 -0.0789 -0.0402 -0.3234 -0.1678 -0.1458

p5 0.0000 -0.1991 0.0364 0.0205 -0.0972 -0.3974

p6 -0.0261 -0.0620 0.0171

No. of obs. 894 201 427 578 155 848

regime regime regime

Nord Europe California Austria

Parameter

 

The last step poses a diagnostic checking of residuals. This is presented in the next Section 
4.2, where we compare non-linear models with linear autoregressive models. Nevertheless, we 
can say that estimated models face the same problem as many other models 
(heteroscedasticity and autocorrelation presence and non-normality of residuals). Our models 
are not exception and they suffer the same imperfections as linear AR models, see next 
section.  

4.2 Comparison with linear AR model 

In this section, we provide a comparison of linear and non-linear AR models. Using the 
same data sets, we estimated linear AR model by employing LS estimator and determine the 
order process with similar principle described in Section 4.1. Thus, for particular value from 
predetermined set of orders, { }1, 2, ,6p ∈ K , we run LS estimate and choose the one that is 

corresponding to the minimal residual variance. From obtained residuals, we also perform 
diagnostic checks and compare all results with non-linear SETAR models. 

Next Table 5 records the estimated slope parameters of AR models. Bold coefficients are 
statistically significant. 

Table 5: Slope parameters of linear AR model 

Parameter Nord Europe California Austria

p0 0.0247 0.6259 0.1731

p1 -0.3255 -0.1620 -0.5301

p2 -0.3667 -0.3141 -0.6444

p3 -0.3012 -0.1526 -0.5448

p4 -0.3276 -0.2227 -0.5664

p5 -0.3465 -0.1212 -0.5956

p6 -0.2331 -0.1198 -0.4859

No. of obs. 1089 1089 1089  

From the Table above, it is obvious, that all parameters of time series are statistically 
significant with the exception of constant.  

Hereafter, the main comparison of models is following. Next Table 6 records the residual 
variances of linear and nonlinear models for each return of electricity price at selected market.  
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Table 6: Residual variance of linear and non-linear models 

Model Nord Europe California Austria

Linear AR 100.317 150.304 450.888

Non-linear SETAR 55.222 68.935 191.181  

According to the results, we can see that the non-linear models fit the observed data doubly 
better.  

Next comparison consists in potential improvement of the diagnostic checks if they give 
better results. Whereas we test autocorrelation in linear models by Portemanteau test with 
order lag 20k = , we are made to employ the modified Breusch-Pagan test (described in 
Section 3) in order to test the same lag order of autocorrelation in non-linear model. To detect 
heteroscedasticity, we employ ARCH effect test and for testing of non-normality we used 
Jaque-Bera test. Results in the form of p-values are summarised in next Table. 

Table 7: Diagnostic checks – p-values of particular tests 

lin (non) lin (non) lin (non) lin (non) lin (non)

Nord Europe 0 0 0 0 0.006 0 0 0 0 0

California 0 0.674 0 0 0 0 0 0 0 0

Austria 0 0 0 0 0.417 0 0 0 0 0

NormalityAutocorr. Heterosc. Skewness Kurtosis

 

It is apparent from the results, that using non-linear SETAR models do not improve the 
diagnostic checks results significantly. The autocorrelation of residuals was getting rid off in 
non-linear model of California time series, but all the others results are almost the same. 
Heteroscedasticity is present for all time series and it is not dependent on the model employed. 
In every case, the ARCH effect test indicates the no-constant conditional residual variance. 
Thereafter, using non-linear model is related to the following consequence: the normal 
distribution of residuals is more skewed in two cases (Nord Pool and Austria) and kurtosis is 
non-normal for both types of models. In the end, the Jarque Bera test of normality indicates 
non-normality of residuals for all estimated econometric models. 

5 Conclusion 

The aim of the paper was to propose non-linear SETAR models of daily electricity prices at 
selected regions (Nord Europe, California and Austria) and comparing estimated non-linear 
models with linear auto-regressive. We compared the non-linear models with linear AR on the 
basis of residual variance and also results of diagnostic checks. 

On the basis of the obtained results, we can conclude that non-linear models fit the data 
better than linear AR model. The residual variance of non-linear models was half in 
comparison to residual variance of linear model. However, using non-linear models did not 
improve the diagnostic checks and in our cases we obtained the same or very similar results. 

Generally, we can say that the non-linear SETAR models are more appropriate to model 
the electricity prices than linear AR model, but none of them capture the time-varying 
conditional variance and non-normality of probability distributions. This crucial problem is in 
the fact that the electricity prices are affected by many factors (i.e. seasonality, occurrence of 
price peaks) and the process of time series is characteristic with very high volatility and with 
high frequency of spikes resulting in the fact that time series seems to be rather mean-
reverting or even non-linearly mean-reverting. Furthermore, the dynamics of time series can 
be so tangled that the process comprises a lot of process. 
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Summary 

Cílem příspěvku je provést odhad a test nelinearity cen elektrické energie ve třech 
vybraných regionech (Kalifornie, Severní Evropa, Rakousko). Pro analýzu nelinearity je 
aplikován SETAR (Self Exciting Threshold Auto-Regressive) model, který zohledňuje změnu 
vybraných parametrů v různých intervalech časových řad. 

Je odhadnut nejvhodnější SETAR model pro modelování cen elektrické energie na 
vybraných trzích, model je statisticky testován a je ověřeno, zda vykazuje lepší výsledky než 
lineární AR model.  
 


