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Tomáš Tichý 1

ABSTRAKT

Modelov ánı́ o čekávaných výnosu̇ je nedı́lnou sou částı́ finan čnı́ho modelov ánı́. Obec-
ně existujı́ dva p řı́stupy k výpo čtu (modelov ánı́) výnosu̇ aktiv. Je možn é postupovat
buď p řı́mo dle stochastick é diferenci álnı́ rovnice nebo dle modelu, který vyjad řuje
cenu aktiva a výnosy zp ětn ě dopo čı́st. Nevýhodou druh ého p řı́stupu je, že p ři ne-
vhodn é aplikaci mu̇že v ést k výrazn é chyb ě vzhledem k odli šn é st řednı́ hodnot ě.
V čl ánku jsou oba p řı́stupy pops ány a vysv ětleny na p řı́pad ě norm áln ě rozložených
výnosu̇ (geometrický Brownu̇v pohyb) a modernı́ho modelu zohledujı́cı́ho i šikmost a
špi čatost (variance gama model). Teoretick á argumentace je podpo řena simula čnı́m
přı́kladem.

ABSTRACT

Modeling of expected returns is an inherent step of financial modeling. In general,
there exist two approaches to calculate the asset return. We can proceed either
directly according to a stochastic differential equation or due to a model which de-
scribes asset price evolution. However, the latter case should be applied carefully,
since it can lead to computation error due to the mean correcting term. In this pa-
per we describe both approaches in detail and derive an error which can arise. We
suppose two distinct models: standard model of normally distributed returns (geo-
metric Brownian motion) and an example of modern models family, which respect
also skewness and kurtosis (Variance gamma model). We support the theoretical
argumentation by several simulation results.

Introduction

Financial modeling play very important role in financial decision-making of all sub-
jects. It can be useful when future levels of financial quantities are required for decision
making procedure.

An inherent step of financial modeling is to calculate returns of financial asset prices.
The returns can be modeled either directly via application of suitable stochastic differential
equation or indirectly via modeling of the asset price evolution first. However, the latter case
can lead to significant errors, since it aims first of all on the future price, but not the return.
The result will be incorrect due to the mean correcting term. By contrast, this approach is
useful when some higher order moments of the returns distribution are calculated (e.g. the
variance does not depend on the constant).

In this paper we formulate two basic stochastic differential equations and related
solution for modeling of the asset price evolution. We also derive expected increments for
each case. Furthermore, we explain why the exponential term in the latter case should
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be different to the stochastic differential equation. We also provide the instructions how to
calculate the error of inadequately used model for returns modeling.

All of that is produced for both, the geometric Brownian motion and Variance gamma
model. These models are defined in Section 2, the arguments, we spoke above, are derived
in Section 3. In Section 4 we run Monte Carlo simulation in order to verify formulas derived
in Section 3. It also helps us to clarify our theoretical results. Furthermore, we provide
simple example of digital option static replication error (on the basis of simulated returns).

1. Stochastic processes

Stochastic processes are standard tools used in financial modeling. The future price
of any financial asset which is regarded to be riskless can be determined in advance. Any
other asset, future price of which can be described by suitable probability distribution, is
regarded to be risky. In this case, we can model the future price of such asset by means of
stochastic process on the basis of probability distribution.

1.1 Normally distributed returns
In finance, standard assumption is to suppose that the prices of financial quantities

are of lognormal distribution. Such distribution can be defined for random variable x by the
following distribution function FLN :

FLN(x) =

∫ x
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exp[−1
2
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)2
]

z
√

2πs
dz, (1)
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fLN(x) =
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2

(
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s

)2
]

x
√

2πs
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Here, m denotes the mean value of ln(x) and s is its standard deviation. The big advantage
of models based on lognormal distribution is that the prices can be only positive – there is
no upper limit, the price can rise infinitely, but the zero (or negative) value is not admissible.

Due to the well known property of the lognormal distribution2 – it is followed by the ex-
ponential of the normally distributed random variables – we also know that the (continuous-
time) returns of lognormally distributed asset price S,

µ = ln
St+dt

St

, (3)

follows the normal distribution. Note, that dt denotes the infinitesimal time interval.

The normal distribution is defined by its distribution function FN (µ is the average
return (drift) and σ is its volatility):
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2If a variable is lognormally distributed, its natural logarithm will be distributed normally. If the natural
logarithm of variable S is normally distributed, the sum (or difference) of natural logarithms should be also
normally distributed.



or density function fN :

fN (x) =
exp[−1

2

(
x−µ

σ

)2
]√

2πσ
. (6)

Analyzing the density function of the normal distribution and lognormal distribution
we can discover the following relations. If the random variable is distributed according to
the law of the lognormal distribution, its natural logarithm is distributed normally. Moreover,
the distribution function of lognormal distribution can be defined on the basis of the normal
distribution function:

FLN(x) = FN

(
ln x−m

s

)
. (7)

Thus, the asset price S ∈ LN [m, s] with m = E[lnS] and s2 = var[lnS]. Simultaneously,
lnS ∈ N [µ, σ] with µ = E[lnS] and σ2 = var[lnS]. Now, it is obvious that the lognormal dis-
tribution is defined in the terms of the mean and the variance of related normal distribution
and we can therefore replace s and m by µ and σ, respectively. Finally, we should not miss

the fact that the lognormal distribution is not defined by its mean E[S] = eµ+σ2

2 and variance
var[S] = σ2E[S]2 (we explain these relations in the next section in more details).

The model which is based on the normal distribution of asset returns or, equivalently,
lognormal distribution of asset prices, is usually referred to as the geometric Brownian
motion (GBM):3

S(P)
t+dt = St exp

[
(µ− ω) dt + σ

√
dtε

]
= St exp

[(
µ− σ2

2

)
dt + σ

√
dtε

]
. (8)

It is the solution of the following stochastic differential equation (SDE):

dS(P) = µStdt + σStdZt. (9)

Here, dZt is a Wiener process Zt = ε
√

t, ε ∈ N (0; 1). The term ω = σ2

2
must be deduced in

(8) in order to correct the mean of the model, and (P) indicates, that the model is defined
under the real world measure (not risk-neutral one). In this way, the expected return will
really be µ. The justification will be provided later. Note, that it was rigorously derived by K.
Itô [5].

1.2 Non-normally distributed returns
Modern models of financial asset price evolution try to respect the well known fact,

see e.g. Fama [3], that the asset returns are not distributed normally – exhibit excess kur-
tosis and either positive or (more often) negative skewness. Several such models defined
as subordinated Brownian motions belongs to the Lévy models family.

Denote Z(t; σ, µ) as time t dependent Wiener process with parameters µ = 1 and
σ =

√
t, i.e. Zt = ε

√
t, ε ∈ N (0; 1). Then, we can define Brownian motion X (t; θ, ϑ) with

increment θ and volatility ϑ driven by Lévy process `(t) is simple – we just need to replace
t by `(t). Hence:

Xt = θ`(t) + ϑZ(`t), (10)

3Since the model was (re)introduced into the finance area in Black and Scholes [1], the terms Black and
Scholes world and Black and Scholes setting also refer to this model.



which can be also formulated as follows:

Xt = θ`(t) + ϑε
√

`(t). (11)

We can interpret this formula in such a way that increment dX within infinitesimal time
interval dt is normally distributed with (random) mean value θ`(dt) and variance var =

ϑ2`(dt). The mean value of the subordinating process `(t) should be dt and its variance will
govern the fat tails of the distribution.

Here, we will state as an example the Variance gamma model (VG model) introduced
subsequently by Madan and Seneta [8] (symmetric case), Madan and Milne [7] and Madan
et al. [6] (asymmetric case). For more details on Lévy models family or definition/application
of other processes see e.g. Cont and Tankov or Tichý [9].

The VG model is driven by gamma process. The probability density function of
gamma distribution G[µ; ν] with µ = 1 is defined as follows:

fG(g, t; µ = 1, ν) =
g

t
ν
−1 exp(− g

ν
)

ν
t
ν Γ( t

ν
)

. (12)

Since VG(g(t; ν); θ, ϑ) can be defined as

VGt = θgt + ϑZ(gt) = θgt + ϑ
√

gtε, (13)

we can get the density function of the VG model as follows:

fVG(X , g(t; ν); θ, ϑ) =
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On this basis, we can formulate the distribution function:

FVG(X , g(t; ν); θ, ϑ) =
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Finally, the asset price model can be formulated as follows:

S(P)
t+dt = St exp

(
µdt + VG(P)

dt − ωdt
)

= St exp (µdt + θgdt + ϑ
√

gdtε− ωdt) , (16)

where ω = − 1
ν

ln
(
1− θν − 1

2
ϑ2ν

)
.

2. Modeling of the expected return

The key step in financial modeling is to be able to estimate the future evolution of
asset prices or theirs returns in both, the risk-neutral and real market conditions.

2.1 Geometric Brownian motion
Recall GBM (8):

St+dt = St exp
[
(µ− ω) dt + σ

√
dtε

]
= St exp

[(
µ− σ2

2

)
dt + σ

√
dtε

]



and related SDE (9):
dS = µStdt + σStdZ.

Since both equations are valid also for longer time intervals, we can replace dt by T − t =

τ > 0.

In order to get the price at time T , it is sufficient to produce random number from
standard normal distribution, ε ∈ N [0, 1], and put it into (8) to get S(i)

T . Here, the upper
index (i) indicates the i−th scenario. If we repeat the procedure sufficiently many times,
the mean of the produced data set should correspond to results obtained analytically due
to (8) and (9).

Thus,

E[ST ] =
1

N

N∑
i=1

S(i)
T .

According to (8), we have:

E[ST ] = E
[
Ste

(
µ−σ2

2

)
τ+σ

√
τε

]

This can be decomposed as follows:

E[ST ] = E
[
Ste

µτe−
σ2

2
τeσ

√
τε

]
.

Here, the initial asset price is non-random, as well as the first two exponents. Hence, we
can write:

E[ST ] = Ste
µτe−

σ2

2
τE

[
eσ
√

τε
]
.

Although the expected value of ε is zero, the same is not true for exp(ε). Due to the proper-
ties of the exponential function and the standard normal distribution, we get:

E
[
eσ
√

τε
]

= e−
σ2

2
τ .

Obviously, we can conclude, that the expected value of ST is determined by nothing more
than µ and τ :

E[ST ] = Ste
µτ .

It also implies, that:

ln
E[ST ]

St

= µτ.

Here, we should stress commonly produced mistake (and usually overlooked). If
instead of taken the mean of the terminal price we calculate the returns first,

E[x] =
1

N

N∑
i=1

ln
S(i)

T

St

,

we incorrectly arrive at:

E[x] =

(
µ− σ2

2

)
τ.



It results from the fact, that

E[x] = E
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(
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2

)
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√
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[
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(
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(
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Clearly, since the expected value of ε is zero, we get again:

E[x] =

(
µ− σ2

2

)
τ.

Of course, if we are interested in modeling of the return for some purposes, it is
sufficient to proceed according to SDE (9). In this case, the mean will be, as we want,
µτ . Within this context, we should also stress that if we are interested in the variance, we
should either proceed according to (9) and calculate only returns, or alternatively due to
(8). In the latter case, we can get either variance of returns (by taking natural logarithms of
particular prices) or variance of prices. In both cases, we get the same variance of returns
since only the random part, identical in both formulation, is significant.

2.2 Variance gamma model
Within the VG model, the procedure is similar. In order to get the future price of an

asset, we must according to (16) produce two independent random numbers ε and g, each
from distinct distribution, standard normal and gamma.

S(P)
T = St exp (µτ + θgτ + ϑ

√
gτε− ωτ) .

Repeating the procedure several times, we can calculate the mean due to

E[ST ] =
1

N

N∑
i=1

S(i)
T .

Obviously, it should be equal to:

E[ST ] = E
[Ste

µτ+θgτ+ϑ
√

gτ ε−ωτ
]
.

Since E[exp(θgτ + ϑ
√

gτε)] = exp(ωτ), we can simplify this formula as follows:
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µτeθgτ+ϑ
√

gτ εe−ωτ
]

= E [Ste
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which corresponds to

ln
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St

= µτ.

Here, we can also calculate the returns before taking the expectation. In such case
we proceed as follows:

E[x] = E
[
ln
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µτ+θgτ+ϑ
√

gτ ε−ωτ
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]
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[
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(
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√
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= E [µτ + θgτ + ϑ
√

gτε− ωτ ]

= µτ − ωτ + E [θgτ + ϑ
√

gτε]

= µτ − ωτ + θτ.



This is clearly incorrect since ω 6= θ. (We utilize the fact, that E[ε] = 0 and E[gτ ] = τ .)

It also implies, that if we want to model the returns directly, we could simply use
neither the exponential part of (16) reduced by ω or (13). In the latter case we must add the
drift µ and deduce the mean of VG, which is θτ , while in the former, it is sufficient to omit
the mean correcting term ω and deduce θτ :

x̃ = µτ + θgτ + ϑ
√

gτε− θτ.

3. (Un)expected return and option replication

In this section, we first verify by means of Monte Carlo simulation the argumentation
concerning the returns which was derived in the preceding section. Next, we examine the
sensitivity of static digital option replication by tight spread on the real world returns, within
both GBM and VG model.

3.1 Simulation of returns
Suppose the nondividend stock-like asset with initial price S0 = 100, the time horizon

τ = 0.1, the riskless rate r = 0.05 p.a. Suppose also, that the average return of such asset
µ = 0.10 with volatility σ = 0.25, both on annul basis. Furthermore (VG model), we will
suppose the skewness −0.80 and kurtosis 4.14.

First, we will produce N random scenarios (subsequently for N = 1 000, 10 000 and
100 000) according to GBM (8). On the basis of the formulas above, we should get either

E[ST ] = S0 exp(µτ) = 100× exp(0.1× 0.1) = 101.005

or

E[x] =
1

N

N∑
i=1

ln
S(i)

T

St

=

(
µ− σ2

2

)
τ =

(
0.1− 0.252

2

)
0.1 = 0.006875.

Similarly, the variance should be σ2τ = 0.00625.

The results are included in Table 1. We can see that with several thousands of
independent scenarios the simulation works efficiently. Note, that in order to get columns 3
and 5, we can use directly (9).

Table 1: Geometric Brownian motion
N of scenarios price return incorrect return variance

N E[ST ] ln E[ST ]
S0

E[ln ST
S0

]

1 000 101.011 0.010056 0.006921 0.006272
10 000 101.005 0.009999 0.006875 0.006250

100 000 101.005 0.010000 0.006875 0.006250

Now, we will do the same (N random scenarios for N = 1 000, 10 000, 100 000, and
1 000 000) for the VG model.4 On the basis of the formulas above, we should get either

E[ST ] = S0 exp(µτ) = 100× exp(0.1× 0.1) = 101.005

4In order to fit the skewness and kurtosis we have to set θ = −0.34, ϑ = 0.19 and ν = 0.228, which gives
ω = −0.3107.



or

E[x] =
1

N

N∑
i=1

ln
S(i)

T

St

= (µ− ω + θ) τ = (0.1 + 0.3107− 0.34) 0.1 = 0.007068.

The variance should stay the same: 0.00625.

The results are included in Table 2. We can see that in order to get the proper
expected price, we should run several hundred of thousands of independent scenarios.
(Poor convergence can be observed also for other characteristics.)

In order to estimate the expected return, we can use two variants, as indicated
above. We can either get the price due to (16), take the mean and calculate the con-
tinuously defined return (V1), or, alternatively, we can produce VG-random number due to
(13), take its mean, subtract its theoretical value and add the drift µ (V2). With large N,
both results should be the same. As it is obvious from the table, that is not true in general.
The reason is that in both variants, the simulation error is differently specified, either as
E[exp(VG)] (V1) or E[VG].

By contrast, since the variance does not depends on the constant terms, it is the
same independently on the approach we choose. The same is true for skewness and
kurtosis which are not reproduced here (the convergence is slightly worse comparing to
the variance).

Table 2: Variance gamma model
N of scenarios price return V1 return V2 incorrect return variance

N E[ST ] ln E[ST ]
S0

E[VG] + (µ− θ)τ E[ln ST
S0

]

1 000 100.831 0.00828 0.00812 0.00519 0.006617
10 000 100.969 0.00964 0.00956 0.00663 0.006405

100 000 100.979 0.00975 0.00973 0.00680 0.006283
1 000 000 101.008 0.01002 0.01002 0.00709 0.006246

3.2 Digital option replication
A digital option is a special type of financial derivative which pays off either ev-

erything (Ψ = Q) or nothing (Ψ = 0) – the payoff function is discontinuous. This feature
slightly complicates pricing and hedging issues. In general, we can distinguish two basic
approaches to pricing and hedging of financial derivatives – dynamic replication and static
decomposition. The former is based on keeping of everchanging portfolio of the risky and
riskless asset. This approach is strongly model-dependent. By contrast, static approach
is based on decomposition of the digital option into several liquid assets, potentially other
derivatives. This approach should be model-free. In this part of the paper, we examine if
this statement holds also for VG model.

Suppose digital cash-or-nothing call option Vdig/cash
call (τ ;S,K; Q). Here, τ is time to

maturity (τ = 0.1), S and K are the underlying asset price and exercise price, respectively,
both set at the level of 100 initially, and for simplicity, the payoff amount Q = 1. This option
can be statically decomposed into 1/α tight spreads of vanilla call options Hvanillacall

(K−α;K) :

Hvanillacall
(K−α;K) = Hvanilla

call (τ ;S,K − α)−Hvanilla
call (τ ;S,K)



For more details see e.g. [10].

Parameter α will control the (theoretical) error bounds. However, it would be chosen
with respect to market conditions. Here, we suppose that plain vanilla options are liquid
at the market for α = 0.5. It implies the replication error at maturity for the region ST ∈
[99.5, 100] as follows: E ∈ [0, 1], see Figure 1.
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Figure 1: Payoff of the digital call (dashed black line) and replicating portfolio (grey solid
line) on the left; replication error on the right

Now, we will analyze the effect of four distinct drifts (µ = 0.00, µ = 0.05, µ = 0.10,
and µ = 0.15) on the digital option replication error within both GBM and VG models. This
time, however, we produce N = 100 000 random scenarios. More particularly, we study
the probability of the error and basic characteristics of its distribution (shape, mean and
standard deviation and minimum and maximum values). These results are provided in
Table 3 (GBM) and Table 4 (VG).

Table 3: Static replication of digital option – error parameters for GBM
Parameter µ = 0.00 µ = 0.05 µ = 0.10 µ = 0.15
Pr[E < 0] 0.25 0.25 0.25 0.25

min[E ] −1 −1 −1 −1
max[E ] 0 0 0 0

mean[E ] −0.500 −0.500 −0.500 −0.500
st.dev[E ] 0.289 0.289 0.289 0.289

Table 4: Static replication of digital option – error parameters for VG
Parameter µ = 0.00 µ = 0.05 µ = 0.10 µ = 0.15
Pr[E < 0] 0.24 0.21 0.21 0.19

min[E ] −1 −1 −1 −1
max[E ] 0 0 0 0

mean[E ] −0.510 −0.517 −0.508 −0.516
st.dev[E ] 0.291 0.291 0.291 0.291

Concerning the GBM, it is clear that true drift of the underlying asset price does not
play (almost) any role. The probability, that the error will arise is approximately 0.25 and it
is distributed between zero and minus one (as expected due to the theoretical boundaries).



The probability distribution shape (due to the lack of place we do not provide the chart
here) indicates, that the error is uniformly distributed between its boundaries (0 and −1),
the mean as well as median is 0.5. These characteristics are given mainly by the fact,
that the option is ATM and the drift has almost no impact on the probability distribution of
S ∈ [99.5, 100].

By contrast, it is probably not the case of the VG model – through the skewness,
the drift moves the probability distribution so that the probability of error slightly changes.
Particular errors are distributed between the boundaries (0 and−1), however, not so equally
as in the case of GBM.

Conclusions

In this paper we have tried to clarify the modeling of asset prices and their returns
via GBM and VG models and relevant stochastic differential equations. We have presented
several formulas, showing us the way to calculate the asset return which will be in accor-
dance with the expected evolution. We have also derived errors of inadequately applied
approaches.

Finally, we have verified the theoretical results by Monte Carlo simulation. Simple
example of digital option static replication was also included in the paper.
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