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ABSTRAKT

Nedı́lnou sou částı́ modelov ánı́ portfolia, risk managementu, oce ňov ánı́ opcı́ a ob-
dobných probl ému̇ finan čnı́ho inženýrstvı́ je poskytnout pravdivý obr ázek o závislosti
ko še rizikových aktiv. Dle standardnı́ch p ředpokladu̇ Blacka a Scholese, tedy p ři
norm álnı́m rozloženı́ výnosu̇ finan čnı́ch aktiv, lze aplikovat Choleskyho dekompozici
buď kovarian čnı́ nebo korela čnı́ matice n áhodných prvku̇. Av šak p ři respektov ánı́
sou časn ého stavu finan čnı́ch trhu̇ je nutn é br át v vahu i vy ššı́ momenty pravd ěpodo-
bnostnı́ho rozd ělenı́ než jen st řednı́ hodnotu a rozptyl, konkr étn ě se jedn á o šikmost
a špi čatost, což podstatnou m ěrou komplikuje i modelov ánı́ závislostı́. V čl ánku je
poskytnut p řehled z ákladnı́ch p řı́stupu̇ k modelov ánı́ závislostı́ v četn ě vy ššı́ch mo-
mentu̇ šikmosti a špi čatosti. Vybraný p řı́stup je aplikovat s cı́lem odhadnout pravd ě-
podobnostnı́ rozloženı́ výnosu̇ portfolia.

ABSTRACT

A very important part of portfolio modeling, risk management, option pricing, and
several other issues of financial engineering is to give a true picture about the de-
pendency of risky factor baskets. Under standard assumption of Black and Scholes
model, i.e. under normally distributed returns, Cholesky decomposition of either co-
variance or correlation matrix of random terms can be applied. However, present
day market conditions are far from this assumption, since non-zero skewness and
excess kurtosis are typical features there. In this paper we review basic approaches
to model the dependency of asset returns including the higher moments of skew-
ness and kurtosis. Selected approach is applied in order to estimate the probability
distribution function of portfolio returns.

Introduction

An inherent part of modern finance theory is the area of financial modeling. One of
the most important issues is to model the future evolution of financial asset prices in order
to calculate entire risk or to price a derivative asset. When a portfolio of financial assets
is modeled, i.e. particular basket of assets, the dependency among all risky components
should be taken into account.

Standard approach of portfolio dependency modeling is based on the application of
the Cholesky decomposition of normally distributed random terms. Although the assump-
tion of normally distributed returns could do quite well several dozens years ago, at present
time such assumption is much far from reality. Some studies documenting non-zero skew-
ness and higher than normal kurtosis appeared early in 60’s, see e.g. Fama [7]. However,
with globalization effects and due to tight links among national markets, such anomalies like

1This research was done under the support provided by GAČR (Czech Science Foundation – Grantová
Agentura České Republiky) within the project No. 402/05/P085. The support is greatly acknowledged.
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financial crises and sudden defaults of various companies and also several governments
arise more often. These events subsequently result into even higher skewness and kurtosis
comparing with the levels documented in 60’s and 70’s.

It is not surprising that new models of financial price evolution are regularly sug-
gested. Among the most important ones which allow us to match also higher moments of
the underlying distribution, i.e. skewness and kurtosis, we can classify the variance gamma
model (VG model) introduced subsequently by Madan and Seneta [12] (symmetric case),
Madan and Milne [11] and Madan et al. [10] (asymmetric case), normal inverse Gaussian
model (NIG) due to Barndorff-Nielsen (see [2] and [3]) and extensions of VG model like the
CGMY model due to Carr, Geman, Madan and Yor (see [4] and also [5]).

All such models belong to a pure jump Lévy models family and consists of (at least)
two independent stochastic processes. This feature evidently complicate a portfolio model-
ing procedure. In this paper we aim at two things. The first task is to provide a brief survey
of basic approaches to dependency modeling when VG model is considered. The second
task is to examine one selected approach considering the case of FX-sensitive portfolio
evolution.

We proceed as follows. In the following section, basic definitions of geometric Brow-
nian motion and variance gamma model are provided. Next, in Section 3 we state all pos-
sible combinations of modeling the dependency between two variance gamma processes.
Finally, in Section 4 we choose one particular approach in order to model the evolution of
three foreign exchange rates, EUR/CZK, GBP/CZK, and USD/CZK all together.

1. Stochastic processes of L évy type

Formally, a stochastic process {X (t), t ∈ [0, T ]} is a Lévy process on [0, T ], if (for
τ ≥ 0):

1. it starts at zero: X (0) = 0,

2. its increments are independent: X (t + τ)−X (t) does not depend on X (s), s ≤ t,

3. its increments are stationary distributed: X (t + τ) − X (t) = X (τ), in other words, it
depends only on τ ,

4. it is stochastically continuous: limτ→0 Pr[X (t + τ)−X (t) > ε] = 0 for ε > 0.

Last but not least, the distribution is infinitely divisible. Note also, that for many Lévy models
infinite intensity of possibly very small jumps is typical feature (see also property 4).

A very special type of Lévy models is the geometric Brownian motion (GBM), since
its increments are always continuous. Although the model is standard and popular tool of
financial practitioners, it has several drawbacks, coming out from the fact that it is based on
the normal distribution (returns are symmetrically distributed).

The GBM,

S(P)
t+dt = St exp

[
(µ− ω) dt + σ

√
dtε

]
= St exp

[(
µ− σ2

2

)
dt + σ

√
dtε

]
, (1)
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is a solution to the following stochastic differential equation (SDE):

dS(P) = µStdt + σStdZt. (2)

Here, µ is the long term average return, σ is its volatility, both per annum, and dZt is a
Wiener process Zt = ε

√
t, ε ∈ N (0; 1). The term ω = σ2

2
must be deduced in (1) in order to

correct the mean of the model,2 and (P) indicates, that the model is defined under the real
world measure (not risk-neutral one).

A model, which respect the up-to-date features of financial markets is a variance
gamma model (VG model). Its original definition was suggested as a (geometric) Brownian
motion in stochastically defined time. Thus, we can formulate VG model VG(g(t; ν); θ, ϑ)

easily replacing standard time scale t in (2) by a random gamma time gt as follows:

VGt = θgt + ϑZ(gt) = θgt + ϑ
√

gtε. (3)

Obviously, since we require the prices to be only positive, the asset price model should be
an exponential one:

S(P)
t+dt = St exp

(
µdt + VG(P)

dt − ωdt
)

= St exp (µdt + θgdt + ϑ
√

gdtε− ωdt) , (4)

where ω = − 1
ν

ln
(
1− θν − 1

2
ϑ2ν

)
. Here, as usual, µ is the long term average return and ϑ,

θ, and ν are the parameters controlling VG process on the basis of a gamma-time with unit
mean (on standard time t basis). An economic interpretation is that the process evolves
like GBM, but in dependency on unequally distributed information. Since we model the flow
of information by gamma process (i.e. stochastic time), we can say that prices changes in
jumps, whenever new information arrives.

To complete the theory, we also provide first four moments of VG distribution in Table
1.

Table 1: First four moments of VG distribution

Parameter VG(g(t; ν); θ, ϑ)

Mean θ

Variance ϑ2 + νθ2

Skewness θν(3ϑ2+2νθ2)

(ϑ2+νθ2)
3
2

Kurtosis 3
(
1 + 2ν − νϑ4

(ϑ2+νθ2)2

)

2. Dependency modeling

In this section we provide a survey of available approaches to dependency modeling
of VG distributed random variables, including an economic justification. Since the trans-
formation of (3) into (4) is obvious, we only need to be able to match the dependencies of
random terms in (3).3

2Note, that it was rigorously derived by K. Itô, see e.g. [14] for derivation.
3When calculating the terminal price according to (4) we add one constant and deduce another. This

operation has therefore no impact on variance, correlation, skewness and kurtosis. For more on modeling of
multivariate Lévy processes see e.g. [6], [9], [16] and references therein.
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The following combinations can happen (g is a random number from gamma distri-
bution G[t/ν, ν] with mean t and variance ν and ε is a random number from standard normal
distribution N [0, 1]):

Group A Identical g’s and

• identical ε’s,

• correlated ε’s,

• independent ε’s.

Group B Independent g’s and

• identical ε’s,

• correlated ε’s,

• independent ε’s.

Group C Correlated g’s and

• identical ε’s,

• correlated ε’s,

• independent ε’s.

Group D Dependency of overall VG processes, i.e. processes are mutually

• identical, VGi ≡ VGj,

• correlated,

• independent.

Within the latter group, we can model the dependency by a copula approach.

As a first step, it seems to be useful to derive general covariance (correlation) formula
of two possibly dependent VG processes:

VGi = θigi + ϑi
√

giεi,

where i = 1, 2. Due to the principles of covariance calculation and utilizing the fact, that in
general cov[g, ε] = 0, we can write:

cov[VG1,VG2] = θ1θ2cov[g1, g2] + ϑ1ϑ2E[
√

g1g2]E[ε1ε2]. (5)

Similarly, for correlation we get:

cor[VG1,VG2] =
cov[VG1,VG2]

var[VG1]var[VG2]

=
θ1θ2cov[g1, g2] + ϑ1ϑ2E[

√
g1g2]E[ε1ε2]√

ϑ2
1 + ν1θ2

1

√
ϑ2

2 + ν2θ2
2

. (6)
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Group A

Suppose that we have only one gamma process. In this case, correlation formula (6)
changes into:

cor[VG1,VG2] =
θ1θ2ν + ϑ1ϑ2E[ε1ε2]√
ϑ2

1 + ν1θ2
1

√
ϑ2

2 + ν2θ2
2

. (7)

Thus, cov[g1, g2] is equal to the variance of the identical gamma process ν, E[
√

g1g2] = 1

and we work with θ1, ϑ1, θ2, ϑ2, and ν.

If the two Wiener processes are independent, i.e. E[ε1ε2] = 0, the correlation coeffi-
cient can be calculated as follows (Model 1):

cor[VG1,VG2] =
θ1θ2ν√

ϑ2
1 + νθ2

1

√
ϑ2

2 + νθ2
2

. (8)

Hence, although the Wiener processes are independent, the correlation is non-zero. We
can explain this approach as follows: in the economy, all information which can arise have
impact on both assets. Thus, if one of the assets changes in the price, the other must
do the same. However, we cannot observe any dependency in the direction of the price
increments. The results of information arrivals are totally different.

If the two Wiener processes are correlated and we denote the correlation of ε1 and
ε2 as ρ, we can formulate the correlation of VG processes as follows (Model 2):

cor[VG1,VG2] =
θ1θ2ν + ϑ1ϑ2ρ√

ϑ2
1 + νθ2

1

√
ϑ2

2 + νθ2
2

. (9)

Similarly to Model 1, we suppose that each information arrival results into a price change
of both assets. However, we can observe either positive or negative dependency in the
direction of price movements. By contrast, we do not suppose that some event can have
no impact on some asset price – we always observe distinct effect, even if it can be very
small in size. Hence, the global environment influences prices of all assets.

If the two Wiener processes are identical, we have a special case of (9) for ρ = 1.

Group B

Suppose independent gamma processes, so that we can rewrite (6) as follows:

cor[VG1,VG2] =
0√

ϑ2
1 + ν1θ2

1

√
ϑ2

2 + ν2θ2
2

. (10)

Thus, the correlation of VG processes is zero irrespectively of the dependency between
Wiener process.

Suppose correlated Wiener processes (Model 3). Although the correlation among
Wiener processes is nonzero, from the standard time aspect, in fact they develop in random
gamma time. Since respective gamma times are independent, the correlation of VG pro-
cess should be also zero. We can interpret such case as follows. There can happen events
of two types – with price impact either on the first asset or the second one. Sometimes,
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both information can arrive at the same time. However, in average, there is no correla-
tion of event times. Although the directions of price increment are positively (or negatively)
correlated (ignoring the exact time we observe them), the prices change at the same time
moments only scarcely.

Group C

Suppose that we have two correlated gamma processes. This assumption can lead to
various formulations. Now, we will analyze two independent Wiener processes (Model 4).
Within this approach, we usually proceed in such a way that each gamma process is de-
composed into two distinct gamma processes,4 one for global information arrival (identical
for both processes), the other as an idiosyncratic component (independent among each
other). Define such gamma process X as follows:

X = G + I, G ∈ G[a/ν, ν], I ∈ G[(1− a)/ν, ν] ⇒ X ∈ G[1/ν, ν]. (11)

It means, that the correlation coefficient can be calculated due to:

cor[VG1,VG2] = a
θ1θ2ν√

ϑ2
1 + νθ2

1

√
ϑ2

2 + νθ2
2

. (12)

The decomposition of gamma processes give us the nature of economic interpretation:
there can happen events of three types – general, say macroeconomical, which affect
prices of both (all) assets, and unique, which are relevant only for particular company (its
stock or bond price).

Group D

Totally different assumption lies behind the last group of models. We do not decompose the
VG process into two independent ingredients, random gamma time and Wiener process,
but we would like to perceive the dependency of the overall processes. We can therefore
proceed due to the VG copula model. Since this approach requires introducing of the
copula theory, we do not analyze it here.

Graphical illustration

In order to allow better understanding of the dependency variants of VG processes we pro-
vide graphical illustration of Models 1 to 4 (Figure 1). In general, we suppose the following
parameters: θ1 = −0.03, θ2 = −0.05, ϑ1 = 0.20, ϑ2 = 0.25 and ν1 = ν2 = 0.1.

3. FX rate sensitive portfolio evolution

In this section we suppose a case of financial institution with a portfolio sensitive
to the evolution of foreign currency exchange rates, in particular 60% of the portfolio is

4The sum of two gamma processes is always a gamma process.
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Figure 1: Evolution of two possibly dependent VG processes (Model 1 to Model 4)

sensitive to EUR/CZK, 15% to GBP/CZK, and 25% to USD/CZK FX rate. We suppose the
same data set as in Tichý [15],5 see Figure 2 for the evolution and Table 2 for respective
parameters of daily returns on per annum basis. Moreover, the correlation of currency pairs
are as follows: cor(EUR/CZK,GBP/CZK) ≡ ρA = 0.53, cor(EUR/CZK,USD/CZK) ≡
ρB = 0.40, and cor(GBP/CZK,USD/CZK) ≡ ρC = 0.67.

Table 2: Basic parameters of exchange rate returns (p.a.)

τ EUR/CZK GBP/CZK USD/CZK

days µ σ skew kurt µ σ skew kurt µ σ skew kurt

1 −0.036 0.05 −0.24 7.28 −0.05 0.08 −0.42 5.24 −0.07 0.11 −0.14 3.83

In Tichý [15] there were suggested parameters of VG processes to match the empir-
ical distribution of FX returns as closely as possible, see Table 3 for details. Unfortunately,
these values do not allow us to model the dependency of particular currency pairs evolution.
In order to do that we can apply one of the approaches suggested above.

The most intuitive approach is, probably, Model 2 with a correlation coefficient given
by:

cor[VG1,VG2] =
θ1θ2ν + ϑ1ϑ2ρ√

ϑ2
1 + νθ2

1

√
ϑ2

2 + νθ2
2

.

5The time series consist of 1700 data – official exchange rates as published by ČNB (Czech National
Bank) over the period starting in January, 2000 up to September, 2006.
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Figure 2: Daily evolution of EUR, GBP, and USD exchange rates and the continuous
returns. Reproduced from [15].

Table 3: Parameters of VG(θ, ϑ, ν)

FX rate θ ϑ ν

EUR −0.0002 0.0034 1.4152
GBP −0.00006 0.0072 0.48
USD −0.0034 0.0095 0.37

We see that in the equation, there is only one ν, because of identical gamma processes.
The first step is therefore to recalculate the parameters of VG processes to receive identical
ν. Since we cannot assume, that we will be able to match the moments of the distribution
exactly, it is more suitable to apply the least square approach here. The next step is to
calculate particular parameters of ρW , i.e. correlations of Wiener processes, to match the
empirically observed correlation of VG processes. The results are summarized in Table 4.
We see that the correlation of Wiener processes is identical to the task correlation of overall
VG processes, except the sign, which depends on the combination of θi and θj.

Table 4: Parameters of correlation

FX rate pair ρVGi,j ρWi,j
EUR&GBP 0.53 −0.53
EUR&USD 0.40 −0.40
GBP&USD 0.67 0.67

Now, we can run several thousands of independent scenarios of portfolio evolution
and calculate the characteristics of its returns. We proceed due to:

x̃i = µiτ + θigτ + ϑi
√

gτεi − θiτ.

The results are summarized in Table 5. It is obvious, that ignoring the dependency we
would get more skewed distribution of the portfolio returns with higher peak. By contrast,
the risk of the portfolio measured by the standard deviation would be underestimated.
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Table 5: Portfolio characteristics

portfolio Parameters

type µ σ skew kurt

independent 1.7× 10−4 25.5× 10−4 −0.36 5.47
dependent 1.2× 10−4 34.2× 10−4 −0.17 5.28

Conclusions

In this paper we have tried to clarify basic approaches to the modeling of asset prices
or their returns via VG model, including the dependency. We have presented several dis-
tinct approaches to formulate the correlation factor of VG returns. We have also included
potential economic interpretations so that it is more clear for which cases particular models
are useful. For example, models in Group A are useful, if the asset prices jumps always to-
gether. By contrast, models in Group C can be useful if there are two sources of information
arrivals, given by global environment and idiosyncratic ones.

Finally, we have applied Model 2 in order to estimate the parameters of currency
portfolio returns. We first recalculate the parameters of VG processes to get identical pa-
rameter ν. Next, we complete the model by matching it with empirical correlation of currency
pairs. Finally, we have run a simulation of portfolio evolution to calculate the parameters of
portfolio distribution. This result can be used e.g. for risk assessment.
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