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DAY-AHEAD ELECTRICITY PRICES MODELLING 

Čulík Miroslav 1; Valecký Jiří 2 

ABSTRAKT 
Příspěvek je zaměřen na možnosti modelování cen elektřiny v Evropě a USA. 
Článek je strukturován do následujících kapitol: nejprve jsou popsány základní 
charakteristiky chování cen elektřiny. Následně jsou popsány nejčastěji 
používané modely pro modelování náhodného vývoje finančních veličin. 
Praktická část článku je zaměřena na odvození modelů denních cen elektřiny a 
jejich statistickou verifikaci Výsledky jsou pak porovnány a učiněny všeobecné 
závěry.  
 
ABSTRACT 
This paper is focused on the possibilities of electricity modelling at 
deregulated European and U.S. electricity market. First, characteristics of 
electricity price behaviour are described. Next, models frequently used for 
financial variables modelling are described. In the practical part, electricity day-
ahead models are proposed and statistically verified (prices and residuals). 
Results are compared and general conclusions are made 
 

Introduction 
By the end of the 90´s, electricity generating sector belongs among vertically 

integrated sectors, i.e. generation, transmission and distribution were in the 
ownership of one market subject and there was no uncertainty about the electricity 
prices. Ownership in this sector was a monopoly in most countries, often government 
owned and if not, highly regulated. Electricity prices were derived from generation, 
transmission and distribution costs.  

This situation has dramatically changed since 90´s not only in many European 
countries, but all over the world. This sector has been split up into more companies 
for generating, transmission and distribution. Due to the fact, that transmission and 
distribution are network services and natural monopolies, they are still regulated by 
government authorities. Electricity generation is gradually deregulated, which leads 
to increase in number of companies creating effective wholesale market. Distribution 
companies buy electricity at wholesale market and sell it to customers.  

All these structural changes have been motivated to create a more efficient 
and competitive market. Among other consequences of these processes in electricity 
wholesale price markets is price uncertainty. 

The aim of this paper is to develop a few models for electricity price modelling, 
to verify them and test their residuals and to compare models for European and U.S. 
region. 

This paper is organized as follows: first electricity price formation at the 
electricity markets is described. Next, important properties of electricity prices are 
described and explained. In the next chapter, mean-reversion model (with and 
without jumps), geometric Brownian model and econometric models are described. In 
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the end, selected models are derived for time data series of spot electricity prices in 
Europe and U.S. region and are tested statistically.  

1. Stochastic modelling of spot prices 
There exist several models for financial variable modelling. Their application 

possibilities and reliability can differ and depend on the characteristics of the variable 
which one wish to model. In this study, attention will be focused on the most 
frequently used models for financial variables: geometric Brownian model, mean 
reversion model, mean reversion model with jump (spikes) and econometric model.  
1.1. Geometric Brownian model 

This is the most popular and used stochastic model in the financial theory and 
practice. The stochastic equation for this variation (i.e. with no jumps or spikes) is, 

,dzSdtSdS ⋅⋅+⋅⋅= σµ   (1) 
where µ  is return (drift rate), S is stochastic variable, σ  is volatility of S and dz is 
specific Wiener process and holds, that  

dtz~dz ⋅= , (2) 
where z~  is random variable from standard normal distribution N(0, 1). 

Returns in model can be expressed continuously, i.e.  

t
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or discretely,  
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and for the price in the subsequent period t+dt (if returns are expressed as 
continuous) can be written, 
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and for discrete version, 

( )dzdt1SS tdtt ⋅+⋅+⋅=+ σµ .    (5) 
Geometric Brownian model is used frequently for modelling security prices, wage 
rates, output prices and other economic and financial variables. 
1.2. Mean-reversion model 

For commodities, interest rates, exchange rates etc., mean-reversion model 
has more economic logic than above described geometric Brownian model. In this 
case, while in the short-run the prices can fluctuate randomly up and down, in the 
long-run they have the tendency to revert to the long-run equilibrium price. 

The simplest mean-reversion model is defined as follows, 

( ) ,dzSdtSSSdS ⋅⋅+⋅−⋅⋅= ση   (6) 
where η is the speed of reversion, and S is the long-run equilibrium level, to which 
S tends to revert. In this case, the expected change in S depends on the difference 
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between S and S . If S is above (below) S , it is more likely to fall (rise) over the next 
time interval.  

If the current value of S at 0t  is 0S , and S follows equation (6) then the 
expected value at future time t is, 

( ) ( ) t
0t eSSSSE ⋅−⋅−+= η ,   (7) 

and the variance of ( )SSt −  is defined in this way, 

( ) ( )t2
2

t e1
2

SSvar ⋅−−⋅=− η

η
σ .  (8) 

It is obvious from these equations, that the expected value of tS  converges to S as t 

becomes large and the variance converges to 
η
σ
2

2

. 

1.3. Mean-reversion model with jumps 
In the Chapter 1.1 and 1.2, only diffusion processes have been considered, 

i.e. processes that are continuous. Often, it is more realistic to model an economic 
variable as a process with discrete infrequent jumps or spikes. As already explained, 
if spikes occur, the variable quickly reverts to a previous level, whereas in the case of 
jumps the variable stays at the new level for a longer time.  

Data series where variable evolves randomly but at a discrete random time 
moment abnormal shocks (jumps, spikes) either up or down appear, one can model 
this random process as a Poisson process. These jumps (spikes) are fixed or random 
size and are a result of arrival of a new information or event. Moreover, they are 
independently and identically distributed.  

Mean-reversion process with jumps can be mathematically given by the 
following equation, 

( ) ,SdqSdzdtSSSdS +⋅+⋅−⋅⋅= ση  (9) 
where dq is Poisson (jump) term. If λ  denotes mean of arrival of an event resulting in 
jump during a time interval dt, then the probability the jump will occur is given by 

dt⋅λ and that will not occur is 1- dt⋅λ . If the size of jump is u, than it is possible for 
Poisson process dq write, 

⎩
⎨
⎧

⋅
⋅−

=
.dtyprobabilitwithu

,dt1yprobabilitwith0
dq

λ
λ

 

1.4. Econometric models 
ARIMA (Auto-Regressive Integrated Moving Average) models are suitable for 

modelling non-stationary time series. ARIMA models are based on three parts: (1) an 
autoregressive part, (2), integrated process (3) and a contribution from a moving 
average. 

The autoregressive part (AR) of the model has its origin in the theory that 
individual values of time series can be described by linear models based on 
preceding observations. The general formula for describing AR[p]-models 
(autoregressive models) is as follows, 
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t

p
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− ,   (10) 

where p is the order of the model, k is parameter and tu  is error term. 

The moving average models (MA models) mean that time serie values can be 
expressed as dependent on the preceding estimation errors. Past estimation or 
forecasting errors are taken into account when estimating the next time serie value. 
The difference between the estimation tS  and the actually observed value is denoted 
as tu . The general description of MA[q] models is, 

tit

q

1i
it uumS +⋅∑−= −

=
.    (11) 

where q is the order of the model and m is parameter. 
When combining both AR and MA models, ARMA models are obtained. In 

general, an ARMA[p,q] model is described using the following equation, 
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=
− .   (12) 

In traditional ARMA models, disturbance term is supposed to be white noise.  
In particular, the assumption of homoscedasticity (i.e. constant variance) does 

not necessarily need to hold. Time series where constant variance assumption does 
not hold is named heteroscedasticity. 

The differencing is used when the time series is not stationary in order to 
transform it.  The differencing step is denoted by d in the ARIMA model. Usually, first 
or second order differencing is used. The parameter p denotes the order of the 
autoregressive part, the parameter q the order of the moving average part, and d the 
number of differencing steps. 

In economic time series, seasonality (periodic fluctuation) is a typical feature. 
A pure seasonal model is characterized by non-zero correlations only at lags that are 
multiples of the seasonal period N. The seasonal autoregressive (SAR [P]) model is 
given by  

tiNt

P

1i
it uSKS +⋅∑= −

=
   (13) 

and the seasonal moving average (SMA [Q]) model 

tiNt

Q

1i
it uuMS +⋅∑−= −

=
,  (14) 

where K and M are parameters. Models can be also composed in seasonal and non-
seasonal (SARMA[p,q] [P,Q]) models. 

2. Model validation 
When model parameters are found (by applying maximum likelihood 

estimator, least square estimator etc.) statistical hypothesis testing is necessary to 
apply in order to validate the model assumptions. These tests verify the statistical 
significance and assumptions of the parameters used in the model and model’s 
residuals (i.e. actual values less modelled values). If the hypothesis tests on the 
estimated parameters and the residuals are validated, the model could be used for 
forecasting.  
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Generally, the process of model validation can be summarised into following 
steps. 

- formulating two opposite hypothesis (null and alternative), 
- acceptable significance level setting, 
- deriving a test statistic and its statistical distribution under null hypothesis, 
- deriving a decision rule for rejecting or accepting the null hypothesis, 
- calculating statistic and critical value,  
- accepting or rejection of null hypothesis. 
In this study we test the statistical significance of model coefficients (by t-test 

or p-value) and statistical significance of the entire model (by F-test).  
2.1. Autocorrelation and heteroscedasticity 

Moreover, except statistical model validation, it is necessary to analyse some 
specific characteristics of model residuals. The most important characteristics are 
serial autocorrelation and heteroscedasticity presence. 

In the case of autocorrelation, one tests the assumption that the error terms 
(residuals) tu  and itu −  are independently distributed for different observations (which 
implies that they are uncorrelated). If the residuals are not autocorrelated, then  

( ) 0u;uarcov itt =−  for n,,2,1i K= . 

The simplest case of autocorrelation (first-order autocorrelation) can be 
formulated as follows,  

t1t1t uu ερ +⋅= − ,    (15) 

where 1ρ  is the first-order autocorrelation coefficient and tε  is a error term. 

There are a few possibilities how to test the serial autocorrelation. The most 
common test for the first-order correlation presence, AR(1), is the Durbin-Watson 
test. Here the null hypothesis is formulated as 0:H 10 =ρ  against H1 : 01 ≠ρ . Durbin-
Watson statistic, d, is defined in this way, 

( )

∑

∑ −
= =

=

=

=
−

Tt

1t

2
t

Tt

2t

2
1tt

u

uu
d ,  (16) 

with critical values Ud  and Ld . If ( )UU d4;dd −∈ , the null hypothesis is accepted and 
there is no first-order serial autocorrelation, if ( )UL d;dd ∈  or ( )UL d4;d4d −−∈ , the 
test is inconclusive, if Ldd < , null hypothesis is rejected and there is positive first-
order autocorrelation and if Ld4d −> , the null hypothesis is also rejected (negative 
first-order autocorrelation).  

If it is necessary to test higher-order serial autocorrelation, Breusch-Godfrey 
test is a way how to detect AR(p) autocorrelation.  

The general specification of a model with autoregressive error term is as 
follows, tptp2t21t1t uuuu ερρρ +⋅++⋅+⋅= −−− K , which is generally known as the p-th 
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order autoregressive process of the residuals. Lagrange Multiplier (LM) test statistic 
for null hypothesis 0:H p210 === ρρρ K  against the alternative that at least one of 

the ρ  is significantly non-zero is defined as ( ) 2RpTLM ⋅−= , where 2R  is the 
coefficient of determinacy and T is the number of the observation. Null hypothesis is 

rejected; if the LM statistic exceeds the critical value of 
2χ distribution with p degrees 

of freedom (p denotes the order of the serial autocorrelation). Order of the 
autoregressive process, p, depends on the data frequency: p = 4 for quarterly data,  
p = 12 for monthly data, p = 24 for hourly data etc. 

When applying least square or maximum likelihood estimator, one made 
assumption that the residuals tu  are identically distributed with mean zero and 
constant variance 2σ . This assumption of constant variance is known as 
homoscedasticity. By contrast, and what is common in many situations, this 
assumption is often violated and such situation is called heteroscedasticity.  

There are a few tests proposed for testing of heteroscedasticity presence. The 
easiest way is to construct plot of residuals and check if the residuals have constant 
variance. More frequently applied tests are for example Goldfeld-Quandt test, 
Breusch-Pagan test, White’s test etc. In this study, we employed the artificial 
regression to test ARCH (1) effect. The test is based on the construction of the 
artificial regression function, where dependent variable is the square of residuals, i.e. 

2
tu  and independent variable is the square of residuals lagged one period, i.e. 2

1tu − . 
Moreover, when constant is included into model, the artificial regression function has 
this form, 

t
2

1t10
2
t uu εωω +⋅+= − .    (17) 

Parameters of the model (17) are estimated by employing the least squares 
estimator. Under the assumption that the null hypothesis is valid (i.e. conditional 
homoscedasticity of the residuals), the statistic 2RT ⋅  has ( )12χ  distribution (here T is 
the number of observations and 2R  is the coefficient of determinacy). For high levels 
of this statistic, the null hypothesis is rejected and it is confirmed, that the residuals 
are conditionally heteroscedastic at a given confidence level. 

3. Application 
In this part, the attention will be focused on deriving of electricity price models 

and their statistical validation for both regions. First two models of constant volatility 
will be developed: mean reversion model (MR) and geometric Brownian model 
(GBM) both for variant of discrete and continuous returns. Next an econometric 
model will be derived. Each model and its coefficients will be tested; moreover, the 
presence of autocorrelation and heteroscedasticity will be verified. 
3.1. Data 

The subjects of this study are daily average electricity prices in European 
Union, quoted in EUR per MWh (365 daily observations) over the year of 2006 and in 
the U.S.A. quoted in USD per MWh (236 daily observations). Both data series are 
average daily wholesales prices, see Figure 1 and 2. 
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  Figure 1: Avg. daily prices (Europe)                                        Figure 2: Avg. daily prices (USA) 
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3.2. Coefficients estimation for models with constant volatility - Europe 

For model coefficients estimation, least square estimator is applied. MR model 
and GBM model are derived in two variants - with discrete and continuous returns. 
Results and residual statistics are summarised in the Table 1 and 2. 
Table 1: Model coefficient estimates 
 EUROPE 
 mean-reversion model geometric Brownian model 
coefficient S  η  σ (%) dt µ (%) σ (%) dt 

discrete 
return 50,53 0,471 30,38 0,00274 -0,327 30,78 0,00274 

continuou
s return 47,95 0,331 27,57 0,00274 -1,911 27,77 0,00274 

 
 
Table 2: Residual distribution parameters and D-W statistic 
 criterion mean st.dev. skewness kurtosis D-W stat. 

discrete 
return -0,0246 3,0067 0,7609 6,0290 2,14902 M-R 

model continuous 
return -0,0215 3,0072 0,7623 6,0332 2,14919 

discrete 
return -0,0217 3,0085 0,7655 6,0428 2,12686 

GBM continuous 
return -0,0196 3,0043 0,7663 6,0670 2,1271 

 
Based on the coefficients in Table 1, electricity models can be formulated as 

follows, 
M-R model (discrete returns): 

( ) z~dt0,3038dtS50,530,471SS 1t1tt ⋅⋅+⋅−⋅+= −− , 

M-R model (continuous returns): 

( ) z~dt0,2757dtS47,950,331SS 1t1tt ⋅⋅+⋅−⋅+= −− ,   
Geometric Brownian model (discrete return): 
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( )z~dt3078,0dt00327,01SS t1t ⋅⋅+⋅−⋅=+ ,    
Geometric Brownian model (continuous return): 

.z~dt2777,0dt
2

2777,001911,0expSS
2

t1t ⋅⋅+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⋅=+  

However, because the data are on the daily basis, the seventh – order serial 
autocorrelation, AR(7), is more appropriate for detection of autocorrelation presence. 
Because seven lags are used, the effective number of observations is 358. The 
critical value of 2χ  distribution with 7 degrees of freedom is 16,0128. This value was 
always lower than Lagrange Multiplier calculated for residuals of M-R and GBM 
model resulting in rejecting of the null hypothesis in favor of alternative.  

For test of heteroscedasticity presence, coefficients of the artificial regression 
function were estimated and tested; see Chapter 2.1 for more details. The value of 
statistic was in the case of all models high enough the null hypothesis to be refused 
and it was confirmed, that the residuals are conditionally heteroscedastic at 95% 
confidence level. 

Following results summarise the results of M-R process with discrete returns 
for European electricity prices: Figure 3 illustrates true values, model values and 
long-run equilibrium price, Figures 4 and 5 illustrate histogram of residuals and plot of 
residuals. 

Figure 3: European daily prices (true, model, long-run equilibrium) 
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Figure 4: Histogram of residuals – MR  model              Figure 5: Plot of residuals – MR model 
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The artificial regression function according to (17) has the form 

t
2

1t
2
t u23857,080872,6u ε+⋅+= − , model coefficients were estimated by applying 

ANOVA module in MS Excel and tested at 95 % confidence level. The value of 
statistic is 86,9 and is high enough to be the null hypothesis refused and it is 
confirmed, that the residuals are conditionally heteroscedastic at 95% confidence 
level. 
3.3. Coefficient estimation for models with constant volatility – U.S.A. 

For the U.S. electricity prices, the same procedure as in the case of the 
European electricity prices has been made, i.e. first two model´s parameters (both for 
discrete and continuous returns) have been estimated and next, test of the first and 
seventh-order autocorrelation and heteroscedasticity. Models and their parameters 
have been tested at 95 % confidence; the same is true in the case 
heteroscedasticity. Results are summarised in the following tables (see Table 3 and 
4).  
Table 3: Model coefficient estimates (USA) 
 U.S.A. 
 mean-reversion model geometric Brownian model 
coefficient S  η  σ (%) dt µ (%) σ (%) dt 

discrete 
return 71,34 0,308 21,99 0,00424 -0,608 22,48 0,00424 

continuou
s return 68,38 0,377 20,77 0,00424 -2,298 21,47 0,00424 

 
 
Table 4: Residual distribution parameters and D-W statistic 
 criterion mean st.dev. skewness kurtosis D-W stat. 

discrete 
return -0,1328 8,3029 0,2890 17,2386 1,8547 M-R 

model continuous 
return -0,1286 8,3017 0,2927 17,2398 1,8547 

discrete 
return -0,1286 8,3083 0,2728 17,2332 1,8536 

GBM continuous 
return -0,1237 8,3079 0,2737 17,2335 1,8537 
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All the models for the U.S.A electricity prices are possible to formulate as 
follows (based on the coefficients in Table 3): 

M-R model (discrete returns): 

( ) z~dt0,2199dtS71,340,308SS 1t1tt ⋅⋅+⋅−⋅+= −− ,   
M-R model (continuous returns): 

( ) z~dt0,2077dtS68,380,377SS 1t1tt ⋅⋅+⋅−⋅+= −− ,   
Geometric Brownian model (discrete return): 

( )z~dt2248,0dt00608,01SS t1t ⋅⋅+⋅−⋅=+ ,    
Geometric Brownian model (continuous return): 

.z~dt2147,0dt
2

2147,002298,0expSS
2

t1t ⋅⋅+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⋅=+  

In the case of autocorrelation, the test of first – order serial autocorrelation was 
verified. The value of D-W statistics is around 1,854; by comparing with tabulated 
critical values for T observation and number of coefficients k, (M-R model: Ld  = 
1,82399, Ud  = 1,83483, GBM: Ld  = 1,78012, Ud  = 1,79685), no first-order 
autocorrelation was confirmed, see the last column of the Table 5. As in the case of 
Europe, due to the fact that we are working with average daily data, higher-order 
serial autocorrelation is more appropriate. The effective number of observations is 
228, the value of LM is 70,83 (M-R process with discrete returns). This value is above 
the critical value which leads to rejecting null hypothesis and accepting the 
alternative ones. According to (17), variant residual variance across observations (i.e. 
heteroscedasticity) is confirmed. Model coefficients were estimated again by applying 
ANOVA module in MS Excel, tested at 95 % confidence level.   

Following outputs of this study are related to M-R model with discrete returns 
for U.S.A. average daily electricity prices: Figure 6 illustrates and compares true 
values, modelled values and long-run equilibrium price, histogram of residuals and 
plot of residuals are demonstrated in Figure 7 and 8. 

Figure 6: U.S.A. daily prices 2006 (true, model, long-run equilibrium) 
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Figure 7: Histogram of residuals – MR  model              Figure 8: Plot of residuals – MR model 
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Plot of residuals 
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The artificial regression function has form t
2

1t
2
t u26713,07145,50u ε+⋅+= − , the 

value of statistic is 62,77. The value is high enough the null hypothesis to be refused 
and it is confirmed, that the residuals are conditionally heteroscedastic at 95% 
confidence level. 
3.4. Econometric model estimation 

For econometric model estimation, GiveWin program was used. This program 
provides several econometric and statistical modules, one of which (PcGive) provides 
econometric techniques enabeling econometric modelling from single equation 
econometric modelling to cointegration analysis and simultaneous equation methods. 

Following Chapter 3.4.1 covers PcGive model results and graphical outputs for 
electricity data series of Europe, Chapter 3.4.2 than similar results for U.S.A. 
electricity prices. 
3.4.1 Model estimation – Europe region 

The considered model is estimateed by using PcGive as 
SARMA(||2,3,4,5||,0)(||12||,0) in notation: 

where iD  is dummy variable indicating the period in a season. For instance, 
for 2D , value 1 is for every second period otherwise 0. The first equation is SAR(5) 
with lag 2, 3, 4 and 5 and the second one is AR(1) with lag 12. 

Maximum likelihood method was employed to estimate unknown coefficients. 
Following Table 5 includes PcGive module outputs for electricity price 

difference and residuals.  

5

2

12 12

t i i t
i

t t t

dS K D z

z k z u
=

−

= ⋅ +

= ⋅ +

∑
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Table 5: Results of PcGive module – Europe region 

 
 

Coefficient of AR(1) 12k  = -0,129386, coefficients of SAR(5) are: 2K = -
0,856946; 3K = -2,20097; 4K = -0,992292; 5K = -4,05371. 

Residuals were tested on normality ( 2χ  test), on heteroscedasticity presence 
(ARCH effect test) and serial autocorrelation (Portmanteau test), see lower part of the 
Table 5. 

It is obvious from the results that residuals are not normally distributed, are not 
autocorrelated and the residual variance is not constant across observation (i.e. 
heteroscedasticity is present). 

Following Figures 9 – 11 illustrate estimated model results: Figure 9 depicts 
plot of residuals, Figure 10 presents histogram of residuals and Figure 11 compares 
the true and modelled electricity prices.  
                   Figure 9: Plot of residuals                                        Figure 10: Histogram of residuals  
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Figure 11: Comparison of the true and modelled electricity prices (Europe, 2006) 
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3.4.2 Model estimation – U.S.A. region 

The considered model to estimate by using PcGive is ARIMA(0;1;||2,3,5||). 
Table 6 provides PcGive module outputs for electricity price difference and residuals 
for U.S.A. region. 

Table 6: Results of PcGive module – U.S.A. region 

 
 
From the program outputs, it is obvious that the best model describing the 

evolution of electricity prices in U.S.A region can be described by econometric model  
( )5;3;21,0ARIMA  which simply says, that there is 2nd, 3rd and 5th  order of the 

moving average in the price first difference with the coefficients 2m  = -0,264,  

3m = -0,1502 and 5m  = -0,1249.  
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Last three rows in Table 6 concern residual statistics. General results are the 
same as in the case of the Europe: residuals are not normally distributed, not 
autocorrelated and the residual variance is not constant across observation (i.e. 
heteroscedasticity is present). 

Following Figure 12 illustrates plot of residuals, Figure 13 depicts histogram of 
residuals and Figure 14 compares the true and modelled prices. 

Figure 12: Plot of residuals (U.S.A:, 2006)            Figure 13: Histogram of residuals (U.S.A., 
2006) 
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Figure 14: Comparison of the true and modelled electricity prices (U.S.A, 2006) 
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Conclusion 
The aim of this paper was to develop models for modelling daily electricity 

prices at deregulated market in Europe and U.S.A based on data time series over the 
year 2006. 

There are two groups of models, which can be used and were applied: models 
based on the assumption of constant volatility (mean-reversion models, geometric 
Brownian model) and econometric models  
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For models of constant volatility coefficients calculation, the least square 
estimator was employed. Here, one tries to minimize the sum of residual square, i.e. 
the differences between the true and modelled values. The criterion for finding the 
best model is the minimum of sum of residual squares. Results for models of 
constant volatility are summarized in the following Table 7. 

Table 7: Comparison of models with constant volatility assumption 
sum of residual squares ∑ 2

tu  
region model 

discrete returns continuous returns 
M-R model 3236,8 3237,8 Europe GBM 3240,5 3238,4 
M-R model 16191,1 16185,1 

U.S.A. GBM 16210,6 16209,2 
 

It is obvious from the results, that for modelling of electricity prices in region of 
Europe and the U.S.A, the most suitable model according to selected criterion is 
mean-reversion model with discrete returns (for Europe) and with continuous returns 
(for the U.S.A.). This result confirms the fact that the electricity prices have the 
tendency to revert to a long-rung equilibrium level.  

For the time series of both regions, test of first-order autocorrelation was 
made. Durbin-Watson statistic was computed and results were compared with 
tabulated critical values. It results from the values in the last column in Table 2 and 4, 
that the null hypothesis (no first-order serial autocorrelation) can be confirmed. Due 
to the fact that daily prices were analysed, it was more suitable to concentrate on the 
higher-order of autocorrelation. Thus, seventh-order serial autocorrelation presence 
was tested. For Europe and U.S. model residuals, Lagrange Multiplier test was 
computed and compared with critical value from 2χ distribution with 7 degree of 
freedom. According to the results, there is strong seventh order serial autocorrelation 
in the residuals at the 5 % significance level. 

In the end, homoscedasticity of residuals was tested. There were first 
artificial regression function coefficients calculated (by ANOVA module in MS Excel) 
and statistically tested at given confidence level. At 95% confidence, the null 
hypothesis was rejected (conditional homoscedasticity), i.e. the residuals are 
conditionally heteroscedastic. 

For econometric model estimation, PcGive module was applied. The program 
provides statistical characteristics of prices difference and residuals. It is obvious, 
that these models provide better results in spite of the same volatility assumption (i.e. 
heteroscedasticity absence) as the difussion models. One of the reasons is that 
econometric models take into account autocorrelation presence, seasonality and 
other typical features for electricity prices. The final models including the sum of 
residual squares are summarised in the Table 8. 

Table 8: Econometric models´ results  

Region Model coefficients Sum of residual squares ∑ 2
tu  

Europe AR (1), SAR (5) 1577,1 
U.S.A: ARIMA (0;1;||2,3,5||) 14770,63 
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Residuals characteristics are the same for all the models proposed, i.e. 
residuals are not normal, there is no autocorrelation among residuals but 
heteroscedasticity is present. 

Generally, short time data series for proposing econometric models are not 
appropriate; better results could have been obtained if longer time data series had 
been available. At this point, it is not possible to say, which of these models is better 
for price forecasting due to the fact that models were estimated on historical data 
series. 
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